Ashwin Bharadwaj
Evaluating locomotive engine oils with novel oil soluble polyethers as additives

May 23, 2018
Topics

• An intro to polyalkylene glycol (PAG) architectures
 • Functionality and utility
• Motivation
• Oil soluble polyethers (OSP) as additives in locomotive engine oils
 • Friction
 • Wear
 • Deposits
 • Oxidation stability
• Conclusions
Water Soluble, Water Insoluble and Oil Soluble Polyethers

Conventional Polyalkylene Glycol (PAG) Advantages
- High VI’s (up to 250)
- Lower friction coefficients
- Excellent deposit control
- Pour point up to -45°C
- Biodegradability: 10-90%
- Good hydrolytic stability

Oil Soluble Polyethers (OSP) features
- Derived from butylene oxide as one of the commercially available building blocks
- OSP’s have slightly lower VI’s but improved pour points
- Carry conventional benefits of traditional polyethers and are oil miscible
Utility of Polyethers

Uses of EO and PO

Primary base oil in formulations
- Compressor and refrigeration oils
- Hydraulic fluids
- Textile lubricants
- Gear & Bearing oils

Additives
- Viscosity builder in water glycol hydraulic fluids
- Lubricity aid in water miscible metalworking fluids

Uses of OSPs

Primary base oil in formulations
- Compressor/refrigeration oils
- Hydraulic fluids
- Gear & Bearing Oils
- Engine Oils

Co-base oil
- Upgrade Group I-III mineral oils
- Upgrade PAOs

Additives
- Deposit control additive
- Friction modifier
- Viscosity builder in mineral oils

Oil soluble polyethers as additives for engine oils
Locomotive Engine Oils

Engine oil attributes

- Zinc free
- Silver bearings
- Deposit control
- Extended drain intervals: 90 or 180 days
- Fuel economy (FE)
- 20W 40 (Generally group II)

Locomotives

- Fuel consumption varies by size and geography
- ~ 100,000 gallons per year
- ~ 200-300 gallon oil capacity
- Fuel economy and operation efficiency interest end users and formulators
- 0.5% FE across a fleet may be significant
Motivation

- Following benefits with oil soluble polyethers as additives have been observed
 - Friction reduction
 - Enhanced solubility
 - Deposit control

- As additives or co-base oils, what is the performance of existing locomotive engine oils with oil soluble polyethers
Initial Survey of Base Oils

- Group II base oils show higher traction coefficients than other base oils and oil soluble polyethers
- Method: Mini-traction machine (MTM), ball on disc
- Conditions: 1000mm/s, 0-150%SRR, 0.9MPa contact pressure
Formulations Tested

Components

<table>
<thead>
<tr>
<th></th>
<th>Formulation 1</th>
<th>Formulation 2</th>
<th>Formulation 3</th>
<th>Formulation 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial locomotive</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>Oil soluble polyethers</td>
<td>7.0 (OSP A+OSP B)</td>
<td>7.0 (OSP C +OSP D)</td>
<td>9.70(OSP C+OSP D)</td>
<td>9.25(OSP C+OSP D)</td>
</tr>
<tr>
<td>Antioxidant (AO) package</td>
<td>3.00</td>
<td>3.00</td>
<td>0.30</td>
<td>0.75</td>
</tr>
</tbody>
</table>

Viscosity

<table>
<thead>
<tr>
<th></th>
<th>KV 40°C (cSt)</th>
<th>KV 100°C (cSt)</th>
<th>Viscosity Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial locomotive</td>
<td>136.4</td>
<td>15.1</td>
<td>118</td>
</tr>
</tbody>
</table>
Friction Comparison: Commercial Locomotive Oil with Oil Soluble Polyethers
Friction Comparison at 80°C

- Conditions: 50% slide to roll ratio (SRR), 50 N force
- 10-30% friction reduction observed in boundary lubrication

Commercial Locomotive Oil with OSP Friction Comparison, 80°C
Friction Comparison at 150°C

- Conditions: 50% slide to roll ratio (SRR), 50 N force
- Lower friction reduction (~10-20%) observed at higher temperature
- Conclusion: Oil soluble polyether additive packages lowers friction coefficients in boundary lubrication at 50 N and across temperature ranges
Higher SRR Friction Comparison

- Conditions: 150% slide to roll ratio (SRR), 50 N force
- Friction reduction of 20-30% observed in boundary lubrication
Higher SRR Friction Comparison

- Conditions: 150% slide to roll ratio (SRR), 50 N force
- Friction reduction (~10-20%) in boundary lubrication for formulation 3
- Conclusion: At higher slide to roll ratios, friction reduction can be observed with certain oil soluble ether additive packages.
Wear Evaluation

Method: ASTM D4172
Load: 40 kgf
Speed: 1200 rpm
Temperature: 100 and 150°C
Duration 1 h

- No significant difference in wear scars across temperatures
- Oil soluble polyether additive package does not adversely effect wear
- Further testing on silver bearings needed to validate wear performance
Deposit Evaluation by Panel Coker

Test conditions:
FTM-791B
Method 3462

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel Temperature</td>
<td>315°C</td>
</tr>
<tr>
<td>Oil Temperature</td>
<td>125°C</td>
</tr>
<tr>
<td>Splasher Speed</td>
<td>1000 rpm</td>
</tr>
<tr>
<td>Panel Type</td>
<td>Aluminum</td>
</tr>
</tbody>
</table>
Deposit Evaluation by Panel Coker

- Deposits increase at low AO concentration (Formulation 3)
Dow Thermo Oxidative Stability Test – Set Up

- Two spur gears with the large gear rotated at 1750 rpm
- Air bubbling
- 150°C with test duration of 300 h
- Track Total Acid Number (TAN)
- Copper steel coil in flask
- Outlet air passes through condenser to condense the vaporized oil
- Guidance taken from ASTM D5704
 - Generally used for manual and transmission axles
Dow Oxidation Test Results: Total Acid Number

Conclusions

- Total acid number increased significantly for lower antioxidant treat levels (Formulation 3)
- Clean copper steel coils and round-bottom flasks observed (example of formulation 2 shown)
- A minimum amount of AO with oil soluble polyethers may be required to maintain durability
Summary

• Using oil soluble polyethers as additive packages may lower friction coefficients in boundary lubrication

• No adverse effect on wear was observed

• Appropriate antioxidant level may be required

• Oil soluble polyethers as additives are currently being evaluated at a lubricant formulator for locomotive engine oils
Acknowledgements

Ashish Kotnis
John Cuthbert
Kenn Bouchard
Terry Gehrman
David Hand
Siddartha Ghosal
Thank You

Ashwin Bharadwaj
Senior Research Scientist, Dow Industrial Solutions R&D – NAA
Tel: +1 979.238.3783
Email: ARbharadwaj@dow.com
Notice

NOTICE: No freedom from infringement of any patent owned by Dow or others is to be inferred. Because use conditions and applicable laws may differ from one location to another and may change with time, Customer is responsible for determining whether products and the information in this document are appropriate for Customer’s use and for ensuring that Customer’s workplace and disposal practices are in compliance with applicable laws and other government enactments. The product shown in this literature may not be available for sale and/or available in all geographies where Dow is represented. The claims made may not have been approved for use in all countries. Dow assumes no obligation or liability for the information in this document. References to “Dow” or the “Company” mean the Dow legal entity selling the products to Customer unless otherwise expressly noted. NO WARRANTIES ARE GIVEN; ALL IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE ARE EXPRESSLY EXCLUDED.

® ™Trademark of The Dow Chemical Company (“Dow”) or an affiliated company of Dow