Glycol Ethers for Architectural Coatings

Solvent-Based Solvent requirements for coating systems used in architectural applications vary widely. Most architectural (trade sale) coatings, whether primer or topcoat, are heavily pigmented. The solvent must dissolve the resin and assist in pigment dispersion. The solvent should have a low surface tension so that it can thoroughly wet the pigment and the substrate, maximizing the adhesive properties of the cured coating.

Dow glycol ether products are incorporated into many high quality architectural formulations due to their low surface tension. Dow glycol ether products are also used due to their broad range of evaporation rates. Architectural coatings are applied at widely varying temperatures and relative humidities, which imposes special constraints on the coating’s drying characteristics. If the overall evaporation rate of the solvent is too fast, the coating may be ruined by moisture blush, cracking, popping, or poor flow and leveling. The medium to slow evaporation rates of Dow glycol ether products let the formulator match the coating to the application environment.

Glycol ethers and acetates are also used to improve flowout and leveling characteristics and lengthen the wet edge of the paint to provide smoother lapping and eliminate brush marks. In addition, they improve bonding by softening primer undercoats.

Water-Based Seventy percent or more of all architectural paints are latex- or waterborne systems; this is due to the following advantages:

- Ease of handling
- Ease of application and clean-up
- Fast drying
- Good performance

In order for latex paints to have good adhesion, good scrubability, and high gloss, they must contain a coalescing agent to help film formation. Dow glycol ethers offer the formulator a wide range of coalescents from which to choose to meet specific customer paint system needs.

DOW glycol ethers and acetates that find use as coalescing agents are PnB, DPNB, DPNP, DPMA, PPh, Butyl CELLOSOLVE™, Butyl CARBITOL™, EPh, or DALPAD™ A. Generally speaking, coalescent efficiency increases BuCs<BuCb<DPMA<PnB<DPnP<PnB= EPh=DALPAD A, with PPh, EPh, and DALPAD A being the most effective coalescing agents.

The wide range of evaporation rates of Dow glycol ethers and acetates allows application of water-borne paint under varying atmospheric conditions. The evaporation rate range moves from the relatively fast PnB to the relatively slow EPh.

To meet increasingly stringent regulations to reduce the presence of ozone forming Volatile Organic Compounds (VOCs), Dow has expanded its glycol ether portfolio with DOWANOL LoV 485 Glycol Ether. This product is a low odor, non-Hazardous Air Pollutant, coalescent containing <0.5% VOC (as defined by ASTM D6886) effective in coalescing acrylic, styrene-acrylic, and vinyl acrylic films.
Contact information:
North America: +1-800-447-4369
Europe: (+32) 3-450-2240
Asia/Pacific: (+852) 2879 7339
Other areas: +1-989-832-1556
http://www.dow.com/

NOTICE: No freedom from any patent owned by Seller or others is to be inferred. Because use conditions and applicable laws may differ from one location to another and may change with time, Customer is responsible for determining whether products and the information in this document are appropriate for Customer’s use and for ensuring that Customer’s workplace and disposal practices are in compliance with applicable laws and other governmental enactments. Seller assumes no obligation or liability for the information in this document. NO WARRANTIES ARE GIVEN; ALL IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE ARE EXPRESSLY EXCLUDED.

®TM Trademark of The Dow Chemical Company (“Dow”) or an affiliated company of Dow