Product Safety Assessment

Vinyl Acetate

Select a Topic:
- Names
- Product Overview
- Manufacture of Product
- Product Description
- Product Uses
- Exposure Potential
- Health Information
- Environmental Information
- Physical Hazard Information
- Regulatory Information
- Additional Information
- References

Names
- CAS No. 108-05-04
- EC No. 203-545-4
- Ethenyl acetate
- Ethenyl ester 1 - Acetoxyethylene
- VAM
- Vinyl acetate
- Vinyl acetate monomer
- Vinyl ester acetic acid

Back to top

Product Overview

- Vinyl acetate monomer (VAM) is an essential chemical building block used in a wide variety of industrial and consumer products. VAM is a key ingredient in emulsion polymers, resins, and intermediates used in paints, adhesives, coatings, textiles, wire and cable polyethylene compounds, laminated safety glass, packaging, automotive plastic fuel tanks, and acrylic fibers.¹ See Product Uses.
- VAM is flammable and reactive, but can be stored, transported and handled safely if the compound’s properties are understood.² VAM is not considered to be highly toxic,³ but exposure can irritate the respiratory tract, eyes and skin. Skin contact may cause sensitization and an allergic skin reaction in a small proportion of individuals.⁴ Animal studies found that long-term exposure to VAM can cause a carcinogenic response. The tumors observed in laboratory animals at very high exposure concentrations for their lifetimes are not considered to be of elevance to humans who are exposed to low concentrations under typical use conditions.³ See Physical Hazard Information and Health Information.
- Occupational and consumer exposure is dependent upon the conditions under which VAM is used. See Exposure Potential.

¹™Trademark of The Dow Chemical Company (“Dow”) or an affiliated company of Dow

Revised: December 23, 2014
Product Safety Assessment: Vinyl Acetate

- VAM is considered to be slightly too moderately toxic to aquatic organisms\(^3\) including fish.\(^4\) VAM will partition to air where it is rapidly degraded. Bioaccumulation is unlikely.\(^5\) See [Environmental Information](#).

Back to top

Manufacture of Product\(^6\)
- **Capacity** – The Dow Chemical Company has VAM manufacturing facilities in the U.S., Brazil and the Republic of Korea.
- **Process** – VAM is produced by reacting ethylene with acetic acid and oxygen in the vapor phase using a catalyst. A simplified reaction equation appears below.

\[
\begin{align*}
2\text{C}_2\text{H}_4 + 2\text{CH}_3\text{COOH} + \text{O}_2 & \rightarrow 2\text{CH}_2\text{COOCH}=\text{CH}_2 + 2\text{H}_2\text{O} \\
\text{ethylene} & \quad \text{acetic acid} \\
\end{align*}
\]

Because of VAM’s high reactivity, the inhibitor hydroquinone is added at very low levels (3-18 ppm). This inhibitor minimizes VAM reaction (polymerization) under ambient conditions (<86°F or 30°C), allowing longer storage times.\(^7\)

Back to top

Product Description
VAM is a colorless liquid that is immiscible with but slightly soluble in water, and is considered a flammable liquid. It has a sweet, fruity smell in small quantities, but the odor may become sharp and irritating at higher levels.\(^7\)

Back to top

Product Uses
A majority of the VAM manufactured is used to produce polyvinyl acetate emulsions and resins.\(^8\) Polyvinyl acetates can be homopolymers (polymerized alone) or copolymers (polymerized with other monomers such as acrylate esters) to produce polymers for a wide variety of industrial and consumer products, including:

- Emulsion polymers – for paints, coatings, adhesives and textiles. Adhesives made with VAM have excellent adhesion to a host of substrates, including metal, porcelain, wood and paper, and are more color stable than other adhesives and odor-free. It is also widely used in water-based coatings and latex paints.
- Polyvinyl alcohol (PVOH) – for use in textiles, adhesives, paper sizing and fibers.
- Ethylene vinyl acetate (EVA) polyethylene resins – for film, hot-melt adhesives and wire and cable applications.
- Polyvinyl butyral (PVB) – for use as inter-layers in safety glass for automotive and architectural applications.
- Ethylene vinyl alcohol (EVOH) – to produce barrier films used in co-extruded food packaging and automotive plastic fuel tanks. EVOH has excellent gas, odor, flavor and aroma barrier properties.
- Acrylic fibers / textile applications – for fabric treatments, pigments and adhesives. For example, to control shrinkage in polyester compounds and solution vinyl resins.

Back to top

Exposure Potential
VAM is used in the production of many consumer products, but is not sold directly for consumer use. Based on the uses for VAM, the public could be exposed through:

- **Workplace exposure** – Exposure can occur either in a VAM manufacturing facility or in the various industrial facilities that use VAM. VAM should be handled in a well-ventilated area or in completely closed systems. Each manufacturing and industrial facility should have appropriate work process and safety equipment policies in place to limit VAM exposure. Good industrial hygiene practices minimize

\(^{6-7}\)Trademark of The Dow Chemical Company (“Dow”) or an affiliated company of Dow

Revised: December 23, 2014

The Dow Chemical Company

Page 2 of 6
Product Safety Assessment: Vinyl Acetate

the risk of exposure.

- **Consumer exposure to products containing VAM** – Although The Dow Chemical Company does not sell VAM for consumer use, there may be very small residual levels in products manufactured using VAM, such as molded plastics items, adhesives, paints, food packaging containers, hair spray, etc. See Health Information.

- **Environmental releases** – In the event of a spill, the focus is on containing the spill to prevent contamination of soil, surface or ground water. If VAM does reach soil and water nearby, it can pose a flammability and health concern. All ignition sources should be removed from the area, proper grounding and bonding techniques used, and proper protective equipment worn. See Environmental, Health and Physical Hazard Information.

- **Large release** – Industrial spills or releases are infrequent and are generally contained. If a large spill does occur, the material should be captured, collected and re-processed, or disposed of according to federal, state/provincial or local regulations. Emergency personnel should wear proper protective equipment and follow emergency procedures carefully. All ignition sources should be removed from the area, proper grounding and bonding techniques used and flammability concerns communicated to the community, when appropriate. See Environmental, Health and Physical Hazard Information.

Back to top

Health Information

As with all chemical substances, the health effects associated with exposure to VAM depend on the exposure level and duration. VAM is not considered to be highly toxic.\(^3\)

VAM can penetrate the skin, but does not do so readily.\(^3\) Prolonged skin contact may cause sensitization and an allergic skin reaction in a small proportion of individuals.\(^4\)

If VAM contacts the eyes, it may cause severe irritation, including corneal burns, redness and swelling. VAM vapors have been reported to be irritating to the eyes. The odor detection threshold is reported to be about 0.5 ppm. Acute high-level exposure in animals has been shown to result in pulmonary edema.\(^3\)

In 1995, the International Agency for Research on Cancer (IARC) designated VAM as a Group 2B carcinogen, meaning “possibly carcinogenic to humans.” There was “inadequate evidence” in humans for establishing the carcinogenicity of VAM and “limited evidence” in experimental animals. However, because VAM is metabolized to acetaldehyde, a substance previously classified as Group 2B, IARC classified VAM as Group 2B. As a result, Safety Data Sheets for products containing 1,000 ppm (0.1%) or more VAM include a statement regarding the IARC classifications as required by law. However, the tumors that were observed in laboratory animals at very high exposure concentrations for their lifetimes are not considered to be of relevance to humans exposed to low concentrations under typical use conditions.\(^5\)

For more information on the health hazards of VAM and recommended protective equipment, view the Safety Data Sheet.

Back to top

Environmental Information\(^4,5\)

VAM is considered to be slightly to moderately toxic to aquatic organisms.

When accidentally released into the environment, VAM will partition to air where it is rapidly degraded by photochemical pathways involving hydroxyl radicals or ozone. Releases of VAM into the soil or water tend to volatilize to the air. VAM that remains in the soil or water readily biodegrades by either anaerobic or aerobic mechanisms.

\(^{TM}\)Trademark of The Dow Chemical Company (“Dow”) or an affiliated company of Dow.
Product Safety Assessment: Vinyl Acetate

Bioaccumulation, the increase in chemical concentration in an organism over time, is unlikely.

VAM has low solubility in water, so a large spill could float on the surface and cause a fire/explosion hazard if it drained into a sewer. For more information on flammability, see Physical Hazards.

Back to top

Physical Hazard Information

VAM has a flash point below 37°C (100°F) and as such is considered a flammable liquid. When mixed with air at room temperature, VAM can form a flammable mixture. VAM labels typically contain a warning about its flammability and every precaution should be taken to prevent exposure to ignition sources. Proper grounding and bonding procedures should be followed.

Vapors from this product are heavier than air and may settle in low or confined areas or travel a long distance to an ignition source and flash back explosively. The vapors may travel or be moved by air currents and ignited by pilot lights, other flames, smoking, sparks, heaters, electrical equipment, static discharges or other ignition sources at locations distant from the product handling point.

VAM can react with itself and polymerize, so it is always shipped containing a polymerization inhibitor such as hydroquinone. Properly inhibited, VAM is stable under recommended storage conditions. Prolonged or intense exposure to heat, sunlight, ultraviolet (UV) light or X-rays may result in spontaneous polymerization. Pressure generated during such polymerizations may rupture insufficiently vented containers.

To prevent uncontrolled polymerization and protect shelf life, VAM should be stored out of direct sunlight. Storage temperatures should be kept below 30°C (86°F). VAM should be kept out of contact with peroxides, hydroperoxides, hydrogen peroxide, azo compounds and other polymerization initiators, as well as amines, strong acids, alkalis or oxidizing agents. VAM should be stored and handled in rust-free carbon steel or mild steel equipment. Stainless steel, aluminum and high-baked phenolic-lined steel are also suitable. Copper, copper alloys (such as brass or admiralty metal), zinc and galvanized steel should be avoided.

Additional physical property information for VAM is available on the Technical Data Sheet.

Back to top

Regulatory Information

Regulations may exist that govern the manufacture, sale, transportation, use and/or disposal of Vinyl Acetate Monomer. These regulations may vary by city, state, country or geographic region. Information may be found by consulting the relevant Safety Data Sheet or Contact Us.

Back to top

Additional Information

- Safety Data Sheet search. Technical Data Sheet for Vinyl Acetate Monomer
- Vinyl Acetate Council (VAC)’s Vinyl Acetate Safe Handling Guide
- European Chemical Industry Council (CEFIC)
- Acetyl Sector Group

For more business information about VAM, visit Dow’s Vinyl Acetate Monomer web site.

Back to top

™Trademark of The Dow Chemical Company (“Dow”) or an affiliated company of Dow
Product Safety Assessment: Vinyl Acetate

References

1. Vinyl Acetate Monomer Web Site [www.dow.com/vam/]
4. Dow Vinyl Acetate, 14-7 PPM HQ, US Safety Data Sheet
NOTICES

As part of its 2015 Sustainability Goals, Dow has committed to make publicly available safety assessments for its products globally. This product safety assessment is intended to give general information about the chemical (or categories of chemicals) addressed. It is not intended to provide an in-depth discussion of health and safety information. Additional information is available through the relevant Safety Data Sheet, which should be consulted before use of the chemical. This product safety assessment does not replace required communication documents such as the Safety Data Sheet.

The information herein is supplied upon the condition that the persons receiving same will make their own determination as to its suitability for their purposes prior to use. In no event will Dow be responsible for damages of any nature whatsoever resulting from the use of or reliance upon the information herein or the product to which that information refers.

Nothing contained herein is to be construed as a recommendation to use any product, process, equipment or formulation in conflict with any patent, and Dow makes no representation or warranty, express or implied, that the use thereof will not infringe any patent.

NO REPRESENTATIONS OR WARRANTIES, EITHER EXPRESS OR IMPLIED, OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR OF ANY OTHER NATURE ARE MADE HEREUNDER WITH RESPECT TO INFORMATION OR THE PRODUCT TO WHICH INFORMATION REFERS.

Dow makes no commitment to update or correct any information that appears on the Internet or on its World-Wide Web server. The information contained in this document is supplemental to the Internet Disclaimer, www.dow.com/homepage/term.asp.