Reactive Diluents for Achieving High Solids Acrylic Polyurethane Coatings

Christopher Letko, John Argyropoulos, Amber Stephenson

Technical Contact: CSLetko@dow.com
Marketing Contact: ALWatkins@dow.com

April 7, 2016
Dow’s PARALOID™ Resins can be used in a wide breadth of maintenance and protective applications, offering excellent performance properties that include:

- Weatherability
- Gloss and Color Retention
- Early Water Resistance
- Chemical Resistance
- Impact Resistance
- Dry Time

<table>
<thead>
<tr>
<th>Property</th>
<th>PARALOID™ AU-1453</th>
<th>PARALOID™ AU-830</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solids (%)</td>
<td>70</td>
<td>77</td>
</tr>
<tr>
<td>Viscosity (cP)</td>
<td>4500</td>
<td>15000</td>
</tr>
<tr>
<td>Hydroxyl Equiv. Wt.</td>
<td>460</td>
<td>500</td>
</tr>
</tbody>
</table>

Dow’s resins provide an excellent balance of properties, exceptional durability and chemical/solvent resistance

Viscosity modifiers are commonly utilized to meet processing specifications, which may subsequently increase a formulation’s emission content.
Common Options for Decreasing Formulation Viscosity

Volatile organic compound (VOC) emissions continue to face increasing regulation

Option #1 – Solvents
- Increase VOC content
- Face tightening regulatory issues
- Hygroscopic solvents can lead to CO₂ bubble formation
- VOC-exempt solvent evaporation rates can diminish surface quality

Option #2 – Low-Viscosity, Reactive Diluents
- Non-volatile → VOC-compliant
- Covalently incorporate into the polymer network
- Maintain coating hardness
- Kinetically compatible with acrylcs
New Polyols for High Solids 2k PU Coatings

Dow has developed a New Polyol that excels as a reactive diluent for acrylic PU coatings, offering excellent mechanical performance and weatherability.

<table>
<thead>
<tr>
<th>Property</th>
<th>New Polyol</th>
<th>Polyester Polyol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Functionality</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>OH Number</td>
<td>350-410</td>
<td>310</td>
</tr>
<tr>
<td>Viscosity at 25 °C</td>
<td>260-400 cP</td>
<td>1190 cP</td>
</tr>
</tbody>
</table>

Lower Viscosity = Higher Solids
Clear Coat Formulations Were Used for Evaluations

Sample Coating Formulation

<table>
<thead>
<tr>
<th>Material</th>
<th>Solids Content (wt%)</th>
<th>Mass (g)</th>
<th>NV (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paraloid™ AU-1453</td>
<td>70</td>
<td>50</td>
<td>35.0</td>
</tr>
<tr>
<td>New Polyol</td>
<td>100</td>
<td>3.50</td>
<td>3.50</td>
</tr>
<tr>
<td>HDI Trimer</td>
<td>90</td>
<td>22.3</td>
<td>20.0</td>
</tr>
<tr>
<td>Catalyst Solution in Solvent</td>
<td>1.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solvent</td>
<td></td>
<td>12.8</td>
<td></td>
</tr>
</tbody>
</table>

% New Polyol is reported by mass

Added to further adjust solids

- Coatings were applied to AL-412 and QD-412 Q-PANEL substrates
- An antioxidant package was not included in this study
- Coating samples were prepared at a solids level of 65%

NV = Non-Volatile
Performance of the Acrylic Coating is Preserved

<table>
<thead>
<tr>
<th>Test</th>
<th>PARALOID™ AU-1453 Control</th>
<th>10% New Polyol</th>
<th>20% New Polyol</th>
<th>10% Polyester Comparative</th>
<th>20% Polyester Comparative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Film Thickness (mil)</td>
<td>3.0-3.5</td>
<td>3.0-3.5</td>
<td>3.0-3.5</td>
<td>3.5-4.0</td>
<td>3.5-4.0</td>
</tr>
<tr>
<td>Cross Hatch Adhesion</td>
<td>5B</td>
<td>5B</td>
<td>5B</td>
<td>5B</td>
<td>5B</td>
</tr>
<tr>
<td>MEK Double Rubs</td>
<td>>200</td>
<td>>200</td>
<td>>200</td>
<td>>200</td>
<td>>200</td>
</tr>
<tr>
<td>König Hardness (s)</td>
<td>89 ± 8</td>
<td>78 ± 10</td>
<td>98 ± 7</td>
<td>53 ± 4</td>
<td>46 ± 2</td>
</tr>
<tr>
<td>Pencil Hardness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gouge</td>
<td>2B</td>
<td>2B</td>
<td>B</td>
<td><4B</td>
<td><4B</td>
</tr>
<tr>
<td>Scratch</td>
<td>B</td>
<td>B</td>
<td>HB</td>
<td><4B</td>
<td><4B</td>
</tr>
<tr>
<td>Gloss</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20°</td>
<td>116 ± 1</td>
<td>120 ± 2</td>
<td>120 ± 1</td>
<td>118 ± 3</td>
<td>116 ± 1</td>
</tr>
<tr>
<td>60°</td>
<td>114 ± 1</td>
<td>117 ± 1</td>
<td>116 ± 1</td>
<td>116 ± 2</td>
<td>114 ± 1</td>
</tr>
<tr>
<td>85°</td>
<td>102 ± 1</td>
<td>100 ± 1</td>
<td>100 ± 1</td>
<td>100 ± 1</td>
<td>102 ± 1</td>
</tr>
<tr>
<td>Direct Impact (in*lbf)</td>
<td>120</td>
<td>140</td>
<td>120</td>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td>Indirect Impact (in*lbf)</td>
<td>120</td>
<td>140</td>
<td>120</td>
<td>140</td>
<td>140</td>
</tr>
</tbody>
</table>

- ASTM methods D5402, D3359, D4366, D3363, D523, and D2794 were followed
- Samples were prepared at 65% solids

Dow’s New Polyol maintains the superb properties observed for PARALOID™ AU-1453 coatings
High Performance Weatherability is Achieved

- ASTM Method D4587; QUV-A
- 8 h Exposure; 4 h Dark/Humidity Cycles
- Data are normalized to initial gloss reading

Gloss retention holds above 80% after 5000 h of testing
Minimal Yellowing is Observed in QUV Weathering

Color change in the presence of Dow’s New Polyol is almost indistinguishable from the control formulation
Excellent Moisture Resistance is Realized

- ASTM Method D2247
- 100% Humidity at 60°C
- No blistering or hazing
- Gloss retention values were normalized relative to \(t = 0 \) h measurements

High humidity tolerance is observed for coating compositions containing Dow’s New Polyol
PARALOID™ AU-830 Formulations Echo Outstanding Performance

- The New Polyol preserves coating performance
- Excellent gloss and hardness are attained
- Long-term weatherability studies validate durability

Dow’s New Polyol is compatible with multiple acrylic resin systems

Excellent UV stability

High moisture tolerance
Dry Times are not Extended by the New Polyol

Dry Times Measured for PARALOID™ AU-1453 Formulations

- ASTM Method D5895
- Solids levels are adjusted to achieve a viscosity of 50-60 cP

The New Polyol’s reactivity profile matches well with the acrylic polyol
Formulation is Easily Adjusted to Offset Pot-Life Reduction

Data collected using a Brookfield DV-II+ Viscometer
Spindle = L-61

Organic acid can be used to slow the reactivity of higher solids formulation
Conclusions

- Dow has developed a New Polyol that excels as a reactive diluent for 2k acrylic coatings
- Industrial coating formulators can achieve high solids acrylic coatings without compromising mechanical performance
- Excellent UV weatherability was observed for acrylic coatings using the New Polyol as a reactive diluent
- Dry times are not affected by the presence of Dow’s New Polyol
- Additives can be incorporated to allow for tuning of the pot-life values observed for high-solids formulations

Sampling

- The New Polyol (Reactive Diluent 330) is TSCA approved
- Samples can be requested by contacting Chris Letko at dowpolyurethanes@dow.com