High Performance Tie Layer Functionality
AMPLIFY™ TY Functional Polymers

A versatile portfolio of tie layer resins for multi-layer packaging
Leveraging Dow’s extensive knowledge and market position in the packaging industry, Dow’s AMPLIFY™ TY Functional Polymers product family combines a broad offering of tie layer resins into one comprehensive portfolio of proven and developmental products suited for diverse applications.

AMPLIFY™ TY Functional Polymers are designed to suit a broad range of adhesion requirements, production processes and end-use applications ranging from multi-layer films, bottles, sheets and tube structures. The portfolio includes concentrated and formulated resins for:

- Excellent adhesion to a variety of substrates:
 - Polyethylene (PE)
 - Polypropylene (PP)
 - Nylon (PA)
 - Ethylene Vinyl Alcohol (EVOH)
 - Polyethylene
 - Teraphthalate (PET)
 - Polystyrene (PS)
 - Ionomers

- Multiple production processes:
 - Blown film
 - Cast film
 - Retort
 - Shrink & deep draw
 - Thermoforming
 - Blow molding
 - Other

- Wide ranging end-use segments:
 - Food & Specialty
 - Packaging
 - Agricultural
 - Pharmaceuticals
 - Pipe
 - Flooring
 - Other
 - Industrial uses

© Trademark of The Dow Chemical Company (“Dow”) or an affiliated company of Dow
Product Portfolio

<table>
<thead>
<tr>
<th>Product</th>
<th>MAH Graft Level</th>
<th>Density</th>
<th>MI</th>
<th>Base Polymer</th>
<th>Recommended Loading</th>
<th>Adhesion</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMPLIFY™ TY Functional Polymers – Concentrates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMPLIFY™ TY 1052H</td>
<td>High</td>
<td>0.870</td>
<td>1.3</td>
<td>ULDPE</td>
<td>PA: 10-25% EVOH: 20-25% PP:PA or EVOH 40%</td>
<td>PE, PP, PA, EVOH</td>
<td>Flexible & Rigid Retort</td>
</tr>
<tr>
<td>AMPLIFY™ TY 1053H</td>
<td>High</td>
<td>0.965</td>
<td>2.0</td>
<td>HDPE</td>
<td>PA: 6-15% EVOH: 12-20%</td>
<td>PE, PA, EVOH</td>
<td>Flexible & Rigid</td>
</tr>
<tr>
<td>AMPLIFY™ TY 1056H</td>
<td>High</td>
<td>0.950</td>
<td>12.0</td>
<td>HDPE</td>
<td>PE: 10-20%</td>
<td>PE, PA, Aluminum, Cellulose</td>
<td>Flexible & Rigid</td>
</tr>
<tr>
<td>AMPLIFY™ TY 1057H</td>
<td>High</td>
<td>0.912</td>
<td>3.0</td>
<td>LLDPE</td>
<td>PA: 7-15% EVOH: 10-20%</td>
<td>PE, PA, EVOH</td>
<td>Flexible & Rigid</td>
</tr>
<tr>
<td>AMPLIFY™ TY 1250H</td>
<td>High</td>
<td>0.920</td>
<td>0.6</td>
<td>LDPE</td>
<td>PA: 15-20% EVOH: 20-25%</td>
<td>PE, PA, EVOH</td>
<td>Flexible & Rigid</td>
</tr>
<tr>
<td>AMPLIFY™ TY 1151</td>
<td>Medium</td>
<td>0.920</td>
<td>2.5</td>
<td>LLDPE</td>
<td>PA: 15-25% EVOH: 30-40%</td>
<td>PE, PA, EVOH</td>
<td>Flexible & Rigid</td>
</tr>
<tr>
<td>AMPLIFY™ TY Functional Polymers – PE Tie Layer Resins</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMPLIFY™ TY 1251</td>
<td>Low</td>
<td>0.921</td>
<td>0.6</td>
<td>LDPE</td>
<td>100%</td>
<td>PE, PA, EVOH</td>
<td>Pipe Coating</td>
</tr>
<tr>
<td>AMPLIFY™ TY 1351</td>
<td>Low</td>
<td>0.923</td>
<td>2.1</td>
<td>LLDPE</td>
<td>100%</td>
<td>PE, PA</td>
<td>Flexible</td>
</tr>
<tr>
<td>AMPLIFY™ TY 1352</td>
<td>Low</td>
<td>0.922</td>
<td>1.0</td>
<td>LLDPE</td>
<td>100%</td>
<td>PE, PA, EVOH</td>
<td>Flexible</td>
</tr>
<tr>
<td>AMPLIFY™ TY 1353</td>
<td>Low</td>
<td>0.921</td>
<td>2.0</td>
<td>LLDPE</td>
<td>100%</td>
<td>PE, PA, EVOH</td>
<td>Flexible & Rigid</td>
</tr>
<tr>
<td>AMPLIFY™ TY 1354</td>
<td>Low</td>
<td>0.920</td>
<td>3.0</td>
<td>LLDPE</td>
<td>100%</td>
<td>PE, PA, EVOH</td>
<td>Flexible</td>
</tr>
<tr>
<td>AMPLIFY™ TY 1355</td>
<td>Low</td>
<td>0.920</td>
<td>6.0</td>
<td>LDPE</td>
<td>100%</td>
<td>PE, PA, EVOH</td>
<td>Extrusion Coating</td>
</tr>
<tr>
<td>AMPLIFY™ TY 1451</td>
<td>Low</td>
<td>0.910</td>
<td>1.7</td>
<td>LLDPE</td>
<td>100%</td>
<td>PE, PA, EVOH, Ionomer</td>
<td>Flexible & Rigid</td>
</tr>
<tr>
<td>AMPLIFY™ TY Functional Polymers – High Performance PP Tie Layer Resins</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XUS 69109.00(1)</td>
<td>Low</td>
<td>0.910</td>
<td>3.5(4)</td>
<td>–</td>
<td>100%</td>
<td>PP, PE, PA, EVOH</td>
<td>Flexible & Rigid Blown Film Retort</td>
</tr>
<tr>
<td>XUS 69110.00(1)</td>
<td>Low</td>
<td>0.910</td>
<td>5.5(4)</td>
<td>–</td>
<td>100%</td>
<td>PP, PE, PA, EVOH</td>
<td>Flexible & Rigid Cast Film Retort</td>
</tr>
<tr>
<td>AMPLIFY™ TY Functional Polymers – PET Tie Layer Resins</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XZ 89892.00(1)</td>
<td>Low</td>
<td>0.912</td>
<td>2.0</td>
<td>–</td>
<td>100%</td>
<td>PET, PE, PP, PA, EVOH</td>
<td>Flexible & Rigid</td>
</tr>
<tr>
<td>AMPLIFY™ TY 4351 (XZ 89893.00)</td>
<td>Low</td>
<td>0.917</td>
<td>7.5</td>
<td>–</td>
<td>100%</td>
<td>OPET, OPP, PE, PP, PA, EVOH</td>
<td>Flexible & Rigid Cast Film</td>
</tr>
<tr>
<td>AMPLIFY™ TY 4751 (XUS 69106.01)</td>
<td>Medium</td>
<td>0.873</td>
<td>4.4</td>
<td>ULDPE</td>
<td>100%</td>
<td>PET, PE, PP, PA, EVOH</td>
<td>Flexible & Rigid</td>
</tr>
<tr>
<td>AMPLIFY™ TY Functional Polymers – PS Tie Layer Resins</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMPLIFY™ TY 3351</td>
<td>Medium</td>
<td>0.940</td>
<td>5.0</td>
<td>–</td>
<td>100%</td>
<td>PS, PE, PA, EVOH</td>
<td>Rigid & Semi-Rigid</td>
</tr>
<tr>
<td>AMPLIFY™ TY 3352*</td>
<td>Medium</td>
<td>0.940</td>
<td>5.0</td>
<td>–</td>
<td>100%</td>
<td>PS, PE, PA, EVOH</td>
<td>Rigid & Semi-Rigid</td>
</tr>
<tr>
<td>RETAIN™ TY Functional Polymers – Barrier Resin Compatibilization and Reactive Modification</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RETAIN™ 3000</td>
<td>High</td>
<td>0.870</td>
<td>660</td>
<td>ULDPE</td>
<td>2-15%</td>
<td>PE, PP, PA, EVOH</td>
<td>Recycle compatibilizer for PA & EVOH</td>
</tr>
</tbody>
</table>

Typical properties; not to be construed as specifications. Data based on Dow testing; test protocols and additional information available upon request. Some grades supplied out of other geographies.

OPET: Oriented PET
OPP: Oriented Polypropylene
*
Available in Europe only

(1) Developmental product of The Dow Chemical Company
(2) (g/cc) ASTM D 792
(3) (dg/min), 2.16 kg @ 190°C
(4) (dg/min), 2.16 kg @ 230°C
(TM) Trademark of The Dow Chemical Company (“Dow”) or an affiliated company of Dow
AMPLIFY™ TY Functional Polymers

Concentrates

AMPLIFY™ TY Functional Polymers concentrates are the result of our advanced anhydride grafting technology providing customers a highly flexible and customizable solution to meet their specific needs while also providing potential cost savings.

AMPLIFY™ TY Concentrates can be blended with standard polyolefins at a range from 5-40% depending on the desired adhesion level, rheology matching, performance optimization and processing technologies.

All of the AMPLIFY™ TY Concentrates are suitable for adhesion to PE, PA, EVOH and specific offerings exist for adhesion to PP, Ionomers and Aluminum.

<table>
<thead>
<tr>
<th>Product</th>
<th>MAH Graft Level</th>
<th>Density (g/cc)</th>
<th>MI (dg/min), 2.16 kg @ 190ºC</th>
<th>Recommended Loading</th>
<th>Adhesion</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMPLIFY™ TY 1052H</td>
<td>High</td>
<td>0.870</td>
<td>1.3</td>
<td>PA: 10-25% EVOH: 20-25% PP-PA or EVOH 40%</td>
<td>PE, PP, PA, EVOH</td>
</tr>
<tr>
<td>AMPLIFY™ TY 1053H</td>
<td>High</td>
<td>0.965</td>
<td>2.0</td>
<td>PA: 6-15% EVOH: 12-20%</td>
<td>PE, PA, EVOH</td>
</tr>
<tr>
<td>AMPLIFY™ TY 1056H</td>
<td>High</td>
<td>0.950</td>
<td>12.0</td>
<td>PE: 5-20%</td>
<td>PE, PA, Aluminum, Cellulose</td>
</tr>
<tr>
<td>AMPLIFY™ TY 1057H</td>
<td>High</td>
<td>0.912</td>
<td>3.0</td>
<td>PA: 7-15% EVOH: 10-20%</td>
<td>PE, PA, EVOH</td>
</tr>
<tr>
<td>AMPLIFY™ TY 1250H</td>
<td>High</td>
<td>0.920</td>
<td>0.6</td>
<td>PA: 15-20% EVOH: 20-25%</td>
<td>PE, PA, EVOH</td>
</tr>
<tr>
<td>AMPLIFY™ TY 1151</td>
<td>Medium</td>
<td>0.920</td>
<td>2.5</td>
<td>PA: 15-25% EVOH: 30-40%</td>
<td>PE, PA, EVOH</td>
</tr>
</tbody>
</table>

Typical properties; not to be construed as specifications. Data based on Dow testing; test protocols and additional information available upon request.

Features and Benefits

• Customizable adhesion performance to meet specific application requirements
• Excellent adhesion to PE, PA and EVOH for enhanced packaging integrity
• Highly flexible solution enabling adjustment of the rheology to suit multi-layer conversion process requirements
• Cost-efficient solution: Savings can be achieved by consolidating tie layer resins (one fits all), reduced tie layer consumption by tailoring adhesion to specific structures, and lower cost compared to formulated commercial tie layers

Figure 1: Adhesion Performance to PA and EVOH – AMPLIFY™ TY Concentrates in PE-based structures
PRODUCT FOCUS

AMPLIFY™ TY 1052H Functional Polymer - Highly versatile concentrate for PE- and PP-based blends

AMPLIFY™ TY 1052H Functional Polymer can additionally be blended with PP, offering a highly versatile solution for use as a tie layer component in PP and PE barrier films for performance requirements in non-retort and retort applications.

Figure 2: Adhesion performance of AMPLIFY™ TY 1052H Functional Polymer blended 40/60% with PP

![Graph showing adhesion performance](image)

Typical properties; not to be construed as specifications. Data based on Dow testing; test protocols and additional information available upon request.
AMPLIFY™ TY Functional Polymers

PE Tie Layer Formulated

PE tie layer grades of AMPLIFY™ TY Functional Polymers are based on various polyethylenes including LLDPE, mLLDPE, LDPE and HDPEs and are designed for multi-layer films, bottles, sheets and tube structures made of PE and EVOH or PA.

Features and Benefits
- Excellent adhesion to EVOH and PA
- Excellent processability and a thermal stability equivalent to that of conventional polyolefins

Table 2: Product Range and Physical Data, AMPLIFY™ TY Functional Polymers – PE Tie Layer Resins

<table>
<thead>
<tr>
<th>Product</th>
<th>MAH Graft Level</th>
<th>Density (g/cc)</th>
<th>MI(1)</th>
<th>Base Polymer</th>
<th>Adhesion</th>
<th>Conversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMPLIFY™ TY 1251</td>
<td>Low</td>
<td>0.921</td>
<td>0.6</td>
<td>LDPE</td>
<td>PE, PA, EVOH</td>
<td>Composite Pipe</td>
</tr>
<tr>
<td>AMPLIFY™ TY 1351</td>
<td>Low</td>
<td>0.923</td>
<td>2.1</td>
<td>LLDPE</td>
<td>PE, PA</td>
<td>Blown & Cast Film</td>
</tr>
<tr>
<td>AMPLIFY™ TY 1352</td>
<td>Low</td>
<td>0.922</td>
<td>1.0</td>
<td>LLDPE</td>
<td>PE, PA, EVOH</td>
<td>Blown Film</td>
</tr>
<tr>
<td>AMPLIFY™ TY 1353</td>
<td>Low</td>
<td>0.921</td>
<td>2.0</td>
<td>LLDPE</td>
<td>PE, PA, EVOH</td>
<td>Blown & Cast Film</td>
</tr>
<tr>
<td>AMPLIFY™ TY 1354</td>
<td>Low</td>
<td>0.920</td>
<td>3.0</td>
<td>LLDPE</td>
<td>PE, PA, EVOH</td>
<td>Blown & Cast Film</td>
</tr>
<tr>
<td>AMPLIFY™ TY 1355</td>
<td>Low</td>
<td>0.920</td>
<td>6.0</td>
<td>LDPE</td>
<td>PE, PA, EVOH</td>
<td>Extrusion Coating</td>
</tr>
<tr>
<td>AMPLIFY™ TY 1451</td>
<td>Low</td>
<td>0.910</td>
<td>1.7</td>
<td>LLDPE</td>
<td>PE, PA, EVOH, ionomer</td>
<td>Blown & Cast Film</td>
</tr>
</tbody>
</table>

(1)Typical properties; not to be construed as specifications. Data based on Dow testing; test protocols and additional information available upon request.

Figure 3: Adhesion Performance to PA and EVOH – AMPLIFY™ TY Formulated Resins in PE-based structures

PRODUCT FOCUS

AMPLIFY™ TY 1451 Functional Polymer – High Performance PE Tie Layer

AMPLIFY™ TY 1451 Functional Polymer is a high performance tie PE tie layer grade for oriented film and thermoformed sheet applications, offering good adhesion even in the presence of anti-fog additives.

Figure 4: Adhesion Performance to Ionomers – AMPLIFY™ TY Resins

Typical properties; not to be construed as specifications. Data based on Dow testing; test protocols and additional information available upon request.
AMPLIFY™ TY Functional Polymers

PET Tie Layer Formulated

PET tie layer resins in the AMPLIFY™ TY Functional Polymers family are based on an ethylene copolymer and Dow’s advanced anhydride grafting technology. They are designed for oriented multi-layer films, sheets and extrusion coating composed of (O)PET and other adherents including PE, PP, EVOH and PA.

Table 3: Product Range and Physical Data, AMPLIFY™ TY Functional Polymers – PET Tie Layer Resins

<table>
<thead>
<tr>
<th>Product</th>
<th>MAH Graft Level</th>
<th>Density (g/cc)</th>
<th>MI</th>
<th>Base Polymer</th>
<th>Adhesion</th>
<th>Conversion Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>XZ 89892.00 (1)</td>
<td>Low</td>
<td>0.912</td>
<td>2.0</td>
<td>–</td>
<td>PET, PE, PP, PA, EVOH,</td>
<td>Blown Film</td>
</tr>
<tr>
<td>AMPLIFY™ TY 4351</td>
<td>Low</td>
<td>0.917</td>
<td>7.5</td>
<td>–</td>
<td>OPET, OPP, PE, PP, PA, EVOH</td>
<td>Extrusion Coating</td>
</tr>
<tr>
<td>AMPLIFY™ TY 4751</td>
<td>Medium</td>
<td>0.873</td>
<td>4.4</td>
<td>ULDPE</td>
<td>PET, PE, PA, EVOH</td>
<td>Cast Film</td>
</tr>
</tbody>
</table>

Features and Benefits

- Excellent adhesion to PE, PP, PET, PA, EVOH
- Excellent temperature stability that allows processing at elevated temperature up to 320°C
- Suitable for oriented film technology and thermoforming

XZ 89892.00 (1) Experimental Functional Polymer offers excellent adhesion to PET and polyolefins in oriented blown film extrusion.

AMPLIFY™ TY 4351 Functional Polymer offers a very versatile extrusion coating adhesive providing excellent adhesion to aluminum foil, PE, PP, corona treated OPET and OPP – with or without Nitro Cellulose (NC) or polyurethane (PU) based printing inks. (Developmental grade: XZ 89893.00)(1)

AMPLIFY™ TY 4751 Functional Polymer provides outstanding adhesion to PET in cast film technology. (Developmental grade: XUS 69106.01)(1)

Typical properties; not to be construed as specifications. Data based on Dow testing; test protocols and additional information available upon request.

Figure 5: Adhesion Performance – XZ 89892.00 (1) Experimental Functional Polymer

![Figure 5: Adhesion Performance – XZ 89892.00 (1) Experimental Functional Polymer](image)

Blown film: PET/Tie/PE/Tie/PA/Tie/PE 100 μm

Typical properties; not to be construed as specifications. Data based on Dow testing; test protocols and additional information available upon request.

Figure 6: Adhesion Performance – AMPLIFY™ TY 4351 Functional Polymers

![Figure 6: Adhesion Performance – AMPLIFY™ TY 4351 Functional Polymers](image)

Coex-split: 7 g/m² tie and 23 g/m² sealant. Extruder set temperature: 320°C. Line speed 100 m/min

Typical properties; not to be construed as specifications. Data based on Dow testing; test protocols and additional information available upon request.

(1) Developmental product of The Dow Chemical Company

™Trademark of The Dow Chemical Company (“Dow”) or an affiliated company of Dow
AMPLIFY™ TY Functional Polymers

High Performance PP Tie Layer for Retort Applications

A critical performance requirement for retort packaging is that the packaging needs to stay functional even when sterilized at higher temperature and for a shelf life of 18 months and more.

AMPLIFY™ TY Functional Polymers’ high performance PP tie layers are designed for multi-layer films, bottles or sheets composed of PP and EVOH or PA that require very high barrier and heat resistance. They are based on an advanced propylene polymer technology specially suited to these high performance retort applications.

Features and Benefits

- Excellent adhesion to polypropylene and polyethylene and to EVOH or PA
- Excellent processability equivalent to that of PP and a thermal stability up to 135°C for 45 minutes
- Excellent adhesion and optics before and after retort

Table 4: Product Range and Physical Data, AMPLIFY™ TY Functional Polymers – High Performance PP Tie Layer Resins for Retort Applications

<table>
<thead>
<tr>
<th>Product</th>
<th>MAH Graft Level</th>
<th>Density (g/cc)</th>
<th>MI (dg/min), 2.16 kg @ 230°C</th>
<th>Adhesion</th>
<th>Conversion Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>XUS 69109.00(1)</td>
<td>Low</td>
<td>0.910</td>
<td>3.5</td>
<td>PE, PP, PA, EVOH</td>
<td>Blown film</td>
</tr>
<tr>
<td>XUS 69110.00(1)</td>
<td>Low</td>
<td>0.910</td>
<td>5.5</td>
<td>PE, PP, PA, EVOH</td>
<td>Cast film</td>
</tr>
</tbody>
</table>

(1) Developmental product of The Dow Chemical Company

Typical properties; not to be construed as specifications. Data based on Dow testing; test protocols and additional information available upon request.

Figure 7: Peel Strength to PA and EVOH – AMPLIFY™ TY Functional Polymers High Performance PP-tie layers

5-layer blown film PP/tie/PA or EVOH/tie/PP 100 micron

Typical properties; not to be construed as specifications. Data based on Dow testing; test protocols and additional information available upon request.
AMPLIFY™ TY Functional Polymers

PS Tie Layer

Both AMPLIFY™ TY 3351 and 3352 Functional Polymers are constructed on styrene-based polymer technology and designed for multi-layer sheet composed of polystyrene, polyethylene and EVOH or PA. AMPLIFY™ TY 3351 is designed to meet the needs of Dow’s North American, Latin American, and Asia-Pacific customers. AMPLIFY™ TY 3352 is designed to meet the unique needs of the European marketplace.

Features and Benefits

• Excellent adhesion to polystyrene and polyethylene and to EVOH or PA
• Excellent processability

Table 6: Product Range and Physical Data, AMPLIFY™ TY Functional Polymers – PS Tie Layer Resins

<table>
<thead>
<tr>
<th>Product</th>
<th>MAH Graft Level</th>
<th>Density (g/cc)</th>
<th>MI (dg/min), 2.16 kg @ 190°C</th>
<th>Adhesion</th>
<th>Conversion Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMPLIFY™ TY 3351</td>
<td>Medium</td>
<td>0.940</td>
<td>5.0</td>
<td>PS, PE, PA, EVOH</td>
<td>Sheet extrusion</td>
</tr>
<tr>
<td>AMPLIFY™ TY 3352*</td>
<td>Medium</td>
<td>0.940</td>
<td>5.0</td>
<td>PS, PE, PA, EVOH</td>
<td>Sheet extrusion</td>
</tr>
</tbody>
</table>

Typical properties; not to be construed as specifications. Data based on Dow testing; test protocols and additional information available upon request.

AMPLIFY™ Functional Polymers

Pipe Tie Layer

AMPLIFY™ GR and TY Functional Polymers for pipe tie layers are designed as an adhesive for use in multi-layer pipe structures.

Features and Benefits

• Excellent processing characteristics with superior adhesion properties to barrier layers
• Excellent thermal stability at elevated temperature

Table 7: Product Range and Physical Data, AMPLIFY™ Functional Polymers – Pipe Tie Layer Resins

<table>
<thead>
<tr>
<th>Product</th>
<th>MAH Graft Level</th>
<th>Density (g/cc)</th>
<th>MI (dg/min), 2.16 kg @ 190°C</th>
<th>Adhesion</th>
<th>Conversion Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMPLIFY™ GR 380</td>
<td>Low</td>
<td>0.923</td>
<td>3.0</td>
<td>PE-RT or PEX, PA, EVOH</td>
<td>Pipe extrusion</td>
</tr>
<tr>
<td>AMPLIFY™ GR 388</td>
<td>Medium</td>
<td>0.900</td>
<td>1.3</td>
<td>PE-RT or PEX, Aluminum, PA, EVOH</td>
<td>Pipe extrusion</td>
</tr>
<tr>
<td>AMPLIFY™ TY 1251</td>
<td>Low</td>
<td>0.921</td>
<td>0.6</td>
<td>PE, PA, EVOH</td>
<td>Composite Pipe</td>
</tr>
</tbody>
</table>

Typical properties; not to be construed as specifications. Data based on Dow testing; test protocols and additional information available upon request.

*Available in Europe only

™Trademark of The Dow Chemical Company (“Dow”) or an affiliated company of Dow
As barrier film demand increases, so does barrier film scrap. Unlike PE-based film scrap, many converters desire being able to reuse post-industrial barrier film scrap without sacrificing optics or film properties. RETAIN™ Polymer Modifiers act as recycle compatibilizers providing an easy-to-use and truly innovative solution to this growing industry problem. The specific loading level for RETAIN™ polymers ranges from 2-15% depending on the percent of barrier material in the scrap and the amount of scrap converters desire to place back into the film structures. RETAIN™ polymers are intended to be blended post-pelletization and drying of the barrier film scrap. The first products in this new family of RETAIN™ Polymer Modifiers are coming to market now, and others are in the pipeline. Ask your Dow representative about options for trialing these new innovations. The benefits are many, including potential sustainability aspects and considerable cost savings.

Features and Benefits
- Opportunity to make better use of recycle stream by avoiding land-fill and reducing portion of your prime polyolefin purchases
- Eliminate or reduce costs associated with collecting, packaging and selling scrap for little to no value
- Ability to demonstrate and promote commitment to sustainability

Figure 8: Comparative optical properties of barrier film recycle streams

<table>
<thead>
<tr>
<th>Zebedee Clarity (%)</th>
<th>Clarity (%)</th>
<th>Gloss (% 45°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control PE Film</td>
<td>Film with Recycle No Compatibilizer</td>
<td>Film with Recycle 1:1 Ratio (Compatibilizer:PA)</td>
</tr>
</tbody>
</table>

2 mil films; DOWLEX™ 2056G/recycle stream with 30% PA6/DOWLEX™ 2056G (15:70:15)

Typical properties; not to be construed as specifications. Data based on Dow testing; test protocols and additional information available upon request.

Figure 9: Key physical properties retained for barrier film recycle streams

- Dart A (g)
- Elmendorf – CD (g)
- Elmendorf – MD (g)

2 mil films; DOWLEX™ 2056G/recycle stream with 30% PA6/DOWLEX™ 2056G (15:70:15)

Typical properties; not to be construed as specifications. Data based on Dow testing; test protocols and additional information available upon request.

Figure 10: Transmission Electron Microscopy

- No Compatibilizer
- Conventional Compatibilizer
- RETAIN™ Polymer Modifiers

二百微米

Typical properties; not to be construed as specifications. Data based on Dow testing; test protocols and additional information available upon request.

Figure 11: Optical Microscopy

- No Compatibilizer
- Conventional Compatibilizer
- RETAIN™ Polymer Modifiers

二百微米

Typical properties; not to be construed as specifications. Data based on Dow testing; test protocols and additional information available upon request.

Loading Level:
- Recommend starting addition level at 1:1 ratio of compatibilizer to % barrier in scrap.
- Generally, a 2-15% compatibilizer loading is suggested

Processing Conditions:
- Drying of recycle stream is critical prior to reprocessing
- Extruder feed zone temperature 60-100°C
Pack Studios represents a new model for collaboration that is helping to accelerate the development of packaging solutions.

Built on the strength of existing Dow facilities and knowledge, and adding new capabilities and collaboration tools, Pack Studios offers customers around the world a distinctive opportunity to leverage Dow’s expertise, broad product portfolio and application testing capabilities, as well as the ability to access a global network of additional industry experts and resources.

Utilizing a variety of on-site commercial-scale blown and cast film fabrication lines, blow molding and thermoforming lines, packaging equipment and more, this powerful combination of collaboration and capabilities enables faster go-to-market timelines and a consistent pipeline of high performance products for Dow customers across the value chain.

Wherever innovative ideas are shared; wherever packaging needs are expressed; that’s where Pack Studios exists – poised to energize collaboration, innovation, and acceleration toward better packaging.

AMPLIFY™ TY Functional Polymers

Non-Food Applications

AMPLIFY™ TY 1056H is designed as an adhesion promoter between metal, polyolefins, cellulose, PA, EVOH and other engineering resins in non-food applications.

<table>
<thead>
<tr>
<th>Product</th>
<th>MAH Graft Level</th>
<th>Density (g/cc)</th>
<th>MI (dg/min), 2.16 kg @ 190°C</th>
<th>Adhesion</th>
<th>Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMPLIFY™ TY 1056H</td>
<td>High</td>
<td>0.950</td>
<td>12.0</td>
<td>PE, PA, EVOH, Aluminum, Cellulose</td>
<td>Fiber extrusion</td>
</tr>
</tbody>
</table>

Typical properties; not to be construed as specifications. Data based on Dow testing; test protocols and additional information available upon request.

Features and Benefits

- Excellent compatibility with polar and non-polar blend partners
- Adhesion to PA, EVOH and cellulose
The principles of Responsible Care® and Sustainable Development influence the production of printed literature for The Dow Chemical Company (“Dow”). As a contribution towards the protection of our environment, Dow’s printed literature is produced in small quantities and on paper containing recovered/post-consumer fiber and using 100 percent soy-based ink whenever possible.

NOTICE: Any photographs of end-use applications in this document represent potential end-use applications but do not necessarily represent current commercial applications, nor do they represent an endorsement by Dow of the actual products. Further, these photographs are for illustration purposes only and do not reflect either an endorsement or sponsorship of any other manufacturer for a specific potential end-use product or application, or for Dow, or for specific products manufactured by Dow.

NOTICE: No freedom from infringement of any patent owned by Dow or others is to be inferred. Because use conditions and applicable laws may differ from one location to another and may change with time, the Customer is responsible for determining whether products and the information in this document are appropriate for the Customer’s use and for ensuring that the Customer’s workplace and disposal practices are in compliance with applicable laws and other governmental enactments. Dow assumes no obligation or liability for the information in this document.

NO WARRANTIES ARE GIVEN; ALL IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE ARE EXPRESSLY EXCLUDED.

NOTICE: If products are described as “experimental” or “developmental”: (1) product specifications may not be fully determined; (2) analysis of hazards and caution in handling and use are required; (3) there is greater potential for Dow to change specifications and/or discontinue production; and (4) although Dow may from time to time provide samples of such products, Dow is not obligated to supply or otherwise commercialize such products for any use or application whatever.

NOTICE REGARDING MEDICAL APPLICATION RESTRICTIONS: Dow will not knowingly sell or sample any product or service (“Product”) into any commercial or developmental application that is intended for:

a. long-term or permanent contact with internal bodily fluids or tissues. “Long-term” is contact which exceeds 72 continuous hours;
b. use in cardiac prosthetic devices regardless of the length of time involved (“cardiac prosthetic devices” include, but are not limited to, pacemaker leads and devices, artificial hearts, heart valves, intra-aortic balloons and control systems, and ventricular bypass-assisted devices);
c. use as a critical component in medical devices that support or sustain human life; or
d. use specifically by pregnant women or in applications designed specifically to promote or interfere with human reproduction.

Dow requests that customers considering use of Dow products in medical applications notify Dow so that appropriate assessments may be conducted.

Dow does not endorse or claim suitability of its products for specific medical applications. It is the responsibility of the medical device or pharmaceutical manufacturer to determine that the Dow product is safe, lawful, and technically suitable for the intended use. DOW MAKES NO WARRANTIES, EXPRESS OR IMPLIED, CONCERNING THE SUITABILITY OF ANY DOW PRODUCT FOR USE IN MEDICAL APPLICATIONS.

This document is intended for global use.

Published November, 2014.

© 2014 The Dow Chemical Company