KATHON™ CG/ICP
KATHON™ CG/ICP II
KATHON™ ICP III
Highly Effective Preservatives for Use in Household and Industrial Products

General

Why Choose KATHON™ CG/ICP, KATHON™ CG/ICP II or KATHON™ ICP III Preservatives?

The Dow Chemical Company discovered the active ingredients of KATHON CG/ICP, KATHON CG/ICP II and KATHON ICP III preservatives in the late 1960s. For more than 30 years we have driven the progress of isothiazolinone chemistry to meet your evolving needs. Our goal is to provide our customers with much more than a preservative.

Dow is committed to both the isothiazolinone chemistry and the household and industrial products industry. We have extensive toxicological and environmental databases and internal expertise that have allowed KATHON CG/ICP, KATHON CG/ICP II and KATHON ICP III preservatives to be registered with the U.S. EPA.

Many consumer and industrial products are susceptible to microbial contamination which can affect the appearance, odor, and performance of the products.

The preservatives' broad-spectrum activity, excellent physical and chemical compatibility and low toxicity at recommended use levels provide formulators with an economical, effective, and environmentally acceptable alternative to other commercial preservatives.

The information presented in this bulletin will help you evaluate KATHON CG/ICP, KATHON CG/ICP II and KATHON ICP III preservatives. For further information on our products, please contact your local Dow technical representative.

Structures

![Chemical Structures](image)

Component 1 (MCI)
5-chloro-2-methyl-4-isothiazolin-3-one
Empirical Formula: C_4H_4ClNOS

Component 2 (MI)
2-methyl-4-isothiazolin-3-one
Empirical Formula: C_4H_5NOS

Chemical Composition

<table>
<thead>
<tr>
<th>Active Ingredients</th>
<th>CAS #</th>
<th>Empirical Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methyl chloro isothiazolinone (MCI)</td>
<td>26172-55-4</td>
<td>C_4H_4ClNOS</td>
</tr>
<tr>
<td>Methyl isothiazolinone (MI)</td>
<td>2682-20-4</td>
<td>C_4H_5NOS</td>
</tr>
</tbody>
</table>
Physical Properties

The following are typical properties of KATHON™ CG/ICP, KATHON CG/ICP II and KATHON ICP III preservatives; they are not to be considered product specifications.

<table>
<thead>
<tr>
<th>KATHON™ CG/ICP</th>
<th>KATHON CG/ICP II</th>
<th>KATHON ICP III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active Ingredients</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-chloro-2-methyl-4-isothiazolin-3-one</td>
<td>1.15%</td>
<td>1.15%</td>
</tr>
<tr>
<td>2-methyl-4-isothiazolin-3-one</td>
<td>0.35%</td>
<td>0.35%</td>
</tr>
<tr>
<td>Total</td>
<td>1.50%</td>
<td>1.50%</td>
</tr>
<tr>
<td>Inert Ingredients</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnesium salts</td>
<td>23.00%</td>
<td>2.80%</td>
</tr>
<tr>
<td>Cupric nitrate</td>
<td>—</td>
<td>0.15%</td>
</tr>
<tr>
<td>Water</td>
<td>75.50%</td>
<td>95.55%</td>
</tr>
<tr>
<td>Total</td>
<td>98.50%</td>
<td>98.50%</td>
</tr>
</tbody>
</table>

Table: KATHON™ CG/ICP, KATHON CG/ICP II, KATHON ICP III

<table>
<thead>
<tr>
<th>Appearance</th>
<th>KATHON™ CG/ICP</th>
<th>KATHON CG/ICP II</th>
<th>KATHON ICP III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clear liquid</td>
<td>clear liquid</td>
<td>clear liquid</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Color</th>
<th>KATHON™ CG/ICP</th>
<th>KATHON CG/ICP II</th>
<th>KATHON ICP III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colorless to pale yellow</td>
<td>pale blue to pale green</td>
<td>pale blue to pale green</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Odor</th>
<th>KATHON™ CG/ICP</th>
<th>KATHON CG/ICP II</th>
<th>KATHON ICP III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mild</td>
<td>mild</td>
<td>mild</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Specific gravity</th>
<th>KATHON™ CG/ICP</th>
<th>KATHON CG/ICP II</th>
<th>KATHON ICP III</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.19 @ 20°C</td>
<td>1.02 @ 20°C</td>
<td>1.00 @ 25°C</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Density, lb/gal</th>
<th>KATHON™ CG/ICP</th>
<th>KATHON CG/ICP II</th>
<th>KATHON ICP III</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9</td>
<td>8.4</td>
<td>8.3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>pH, as supplied</th>
<th>KATHON™ CG/ICP</th>
<th>KATHON CG/ICP II</th>
<th>KATHON ICP III</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5-3.0</td>
<td>2.5-4.5</td>
<td>1.7-3.7</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stability</th>
<th>KATHON™ CG/ICP</th>
<th>KATHON CG/ICP II</th>
<th>KATHON ICP III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stable at least one year at ambient temperatures and at least six months at 50°C.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Choose the Best Preservative

What Makes KATHON™ CG/ICP, KATHON CG/ICP II and KATHON ICP III the Best Preservatives?

- Lowest dose
- Broader spectrum of activity
- Supplied as aqueous solutions readily incorporated into household/industrial formulations
- Good compatibility with surfactants and emulsifiers, irrespective of their ionic nature
- Effective over a broad pH range
- No color or odor imparted to household/industrial consumer products
- Safe at recommended use levels
- Environmentally acceptable
- Rapidly biodegradable
- Nonpersistent in the environment
- Not bioaccumulating

Now Purer Than Ever!
The latest technology in our state of the art manufacturing facility at Bayport, Texas, has enabled us to provide you with an even purer version of KATHON CG/ICP, KATHON CG/ICP II and KATHON ICP III preservatives with the same consistent quality. However, purity alone is not enough.
Choose the Best Service Package
In the current regulatory environment, where more and more data is required by regulatory authorities, it is important to choose not only the right preservative, but also the right supplier—one who can supply you with a high-purity product of consistent quality and the support that you need.

Dow Has More Than 30 Years of Experience With Isothiazolinone Chemistry:
- Regulatory data
- Extensive toxicological database
- Environmental fate database that is continually updated
- Safe handling expertise that can help you in your manufacturing facilities
- Technical expertise with isothiazolinone chemistry and product preservation in general
- More than 100 patents obtained since the 1960s

Chemical Identification
KATHON™ CG/ICP, KATHON CG/ICP II and KATHON ICP III preservatives contain the same type and level of active ingredients (A.I.)—a mixture of two isothiazolinones identified by the IUPAC system of nomenclature as 5-chloro-2-methyl-4- isothiazolin-3-one and 2-methyl-4-isothiazolin-3-one.

The compositions of KATHON CG/ICP, KATHON CG/ICP II and KATHON ICP III preservatives differ only in the level and type of salts they contain. Their preservative performance is identical. Typical compositions, as supplied, are presented in the table below.

Typical Properties
Each KATHON CG/ICP, KATHON CG/ICP II and KATHON ICP III preservative is a precise formulation of active ingredients and inert salts in aqueous solution. Every batch of KATHON CG/ICP, KATHON CG/ICP II and KATHON ICP III preservative is manufactured to exact specifications and a certificate of analysis can be provided with each order.

Miscibility
KATHON CG/ICP, KATHON CG/ICP II and KATHON ICP III preservatives are totally miscible in water, lower alcohols and glycols and have low solubility in hydrocarbons.

Current Regulatory Status
KATHON CG/ICP, KATHON CG/ICP II and KATHON ICP III are highly effective preservatives approved for use by the U.S. Environmental Protection Agency (EPA) in a wide variety of household and industrial products. The EPA registration numbers are: KATHON CG/ICP 707-166, KATHON CG/ICP II 707-196 and KATHON ICP III. The products are also registered with:
- California Reg. No. 707-166AA
- Canada PCP No. 17726
- Japan MITI approved

Applications/Directions for Use
Directions
The maximum recommended use level for KATHON™ CG/ICP, KATHON CG/ICP II and KATHON ICP III preservatives is 0.15% by weight of product as supplied (22.5 parts per million active ingredients). Since the components of formulations vary considerably and may impact on the effect of preservatives, we urge each manufacturer to confirm the efficacy
and stability of KATHON™ CG/ICP, KATHON CG/ICP II and KATHON ICP III preservatives in use.

Applications
Typical applications for use include:

Cleaners and polishes, such as:
• all purpose cleaners
• floor and furniture polishes/waxes
• automotive washes, polishes and waxes

Laundry products, such as:
• liquid laundry detergents
• fabric softeners
• pre-spotters

Liquid detergents, such as:
• hand dishwashing detergents
• hand cleaners
• hand soaps

Miscellaneous:
• moist towelettes
• air fresheners
• moist sponges
• gel air fresheners

Raw materials and surfactants

Microbiological Properties
KATHON CG/ICP, KATHON CG/ICP II and KATHON ICP III preservatives exhibit outstanding antimicrobial activity against gram-positive and gram-negative bacteria, yeasts and molds. The following table gives the minimum level in ppm of KATHON CG/ICP, KATHON CG/ICP II and KATHON ICP III preservatives, as supplied and as active ingredients that inhibited the growth of various microorganisms in test tube cultures. The data demonstrate the broad activity of KATHON CG/ICP preservatives, but must not be taken as recommended use concentrations.

Minimum Inhibitory Concentrations (MICs) of KATHON™ CG/ICP, KATHON CG/ICP II and KATHON ICP III Preservatives

<table>
<thead>
<tr>
<th>Organism</th>
<th>ATCC No.</th>
<th>ppm (as supplied)</th>
<th>ppm (A.I.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BACTERIA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gram-Positive</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacillus cereus var. mycoides</td>
<td>(R&H L5-83)</td>
<td>150</td>
<td>2</td>
</tr>
<tr>
<td>Bacillus subtilis</td>
<td>(R&H No. B2)</td>
<td>150</td>
<td>2</td>
</tr>
<tr>
<td>Brevibacterium ammonigenes</td>
<td>6871</td>
<td>150</td>
<td>2</td>
</tr>
<tr>
<td>Sarcina lutea</td>
<td>9341</td>
<td>300</td>
<td>5</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>6538</td>
<td>150</td>
<td>2</td>
</tr>
<tr>
<td>Staphylococcus epidermidis</td>
<td>155</td>
<td>150</td>
<td>2</td>
</tr>
<tr>
<td>Streptococcus pyogenes</td>
<td>624</td>
<td>600</td>
<td>9</td>
</tr>
</tbody>
</table>
Organism | ATCC No. | ppm (as supplied) | ppm (A.I.)
---|---|---|---
Gram-Negative
Achromobacter parvulus | 4335 | 150 | 2
Alcaligenes faecalis | 8750 | 150 | 2
Enterobacter aerogenes | 3906 | 300 | 5
Escherichia coli | 11229 | 300 | 5
Flavobacterium suaveolens | 958 | 600 | 9
Proteus vulgaris | 8427 | 300 | 5
Pseudomonas aeruginosa | 15442 | 300 | 5
Pseudomonas cepacia | (Gibraltar 165) | 50 | 0.75
Pseudomonas fluorescens | 13525 | 150 | 2
Pseudomonas oleovarans | 8062 | 300 | 5
Salmonella typhosa | 6539 | 300 | 5
Shigella sonnei | 9292 | 150 | 2

FUNGI
Aspergillus niger | 9642 | 600 | 9
Aspergillus oryzae | 10196 | 300 | 5
Chaetomium globosum | 6205 | 600 | 9
Cladosporium resinae | 11274 | 300 | 5
Gliocladium fimbriatum | (QM7638) | 600 | 9
Mucor rouxii | (R&H L5-83) | 300 | 5
Penicillium funiculosum | 9644 | 300 | 5
Penicillium variable (glaucum) | (U.S.D.A.) | 150 | 2
Phoma herbarium (pigmentivora) | 12569 | 150 | 2
Pullularia (Aureobasidium) pullulans | 9348 | 300 | 5
Rhizopus stolonifer | 10404 | 300 | 5
Trichophyton mentagrophytes (interdigitale) | 9533 | 300 | 5
Candida albicans (yeast) | 11651 | 300 | 5
Rhotorula rubra (yeast) | 9449 | 150 | 2
Saccharomyces cerevisiae (yeast) | 2601 | 150 | 2

*Bacteriostatic and fungistatic tests performed by serially diluting test compounds in trypticase soy broth and 1:100 inoculation with 24-hour broth cultures of test bacterium or yeast, or a fungal spore suspension prepared from 7- to 14-day culture slants washed with 7 mL deionized water. Minimum inhibitory concentration levels determined visually after 2 days' incubation at 37°C for bacteria and 7 days' incubation at 28 to 30°C for fungi.

Formulation Recommendations

Maximizing Stability
As with many chemicals, the stability of KATHON™ CG/ICP, KATHON CG/ICP II and KATHON ICP III preservatives may be affected by various chemical or environmental conditions. Whether stability problems develop or not depends upon a product’s formulation and the degree of destabilizing influence present. The following tips will help you optimize preservative stability in your product. It is recommended that the stability of KATHON CG/ICP, KATHON CG/ICP II and KATHON ICP III preservatives be tested in specific product formulations before commercialization. Your evaluation should also consider the length of time preservation is needed.

High Temperature (above 60°C)
Avoid high temperatures for extended periods of time. KATHON CG/ICP, KATHON CG/ICP II and KATHON ICP III preservatives are best added when the temperature is below 45°C. Figure 1 shows an example of how elevated storage temperatures can affect KATHON CG/ICP preservative stability.
High pH (above pH 8)
Some degradation of active ingredients may occur above pH 8. The degree of degradation experienced is highly dependent on the formulation components. Preservative degradation can be minimized by:

1. Lowering the pH below 8. Optimum pH values for long-term stability are 7 or lower. Figure 2 shows the effect of pH on KATHON™ CG/ICP, KATHON CG/ICP II and KATHON ICP III preservative stability in deionized water.

2. Adding a divalent copper salt to the formulation at a level of copper equal to the level of KATHON preservative active ingredients. An example of the effect of copper on KATHON CG/ICP preservative stability in a liquid cleaner at pH 8 is shown in Figure 3.

3. When adjusting pH upward during manufacturing, it is best to use an alkali metal base (NaOH) rather than an amine base (NH₄OH, TEA, DEA, MEA). Figure 4 shows the effect of different bases on the stability of KATHON CG/ICP, KATHON CG/ICP II and KATHON ICP III preservatives in a polymeric raw material.

Figure 1
Stability of KATHON™ CG/ICP Preservatives in a Fabric Softener at Two Temperatures

Figure 2
Stability of KATHON™ CG/ICP Preservatives at Various pHs and Temperatures
Reducing Agents/Oxidizing Agents/Nucleophiles

Under certain conditions, reducing agents (such as sulfite, bisulfite, sulfide, mercaptan), oxidizing agents (such as sodium hypochlorite, hydrogen peroxide), and nucleophiles (such as primary and secondary amines) can deactivate some or all of the active ingredients in KATHON™ CG/ICP, KATHON CG/ICP II and KATHON ICP III preservatives.

The following suggestions will help prevent or reduce the severity of this reaction:

1. Remove the reducing agents or oxidizing agents by adding an appropriate level of oxidizing or reducing agent. Residual levels of such agents should be <25 ppm prior to the addition of the preservative. An example of removing a reducing agent (sulfite, in this case) and improving KATHON CG/ICP preservative stability in a surfactant is shown in Figure 5.
2. Avoid storage of product at elevated temperatures (see Figure 1).

3. Reduce the pH of the product to less than 8, if possible. Reducing the pH protonates amine nucleophiles and greatly reduces their reactivity with KATHON™ CG/ICP, KATHON CG/ICP II and KATHON ICP III preservatives. Figure 6 shows the effects of pH and temperature on KATHON CG/ICP, KATHON CG/ICP II and KATHON ICP III preservative stability.

4. Reduce or remove the nucleophiles present. While the stability of KATHON CG/ICP, KATHON CG/ICP II and KATHON ICP III preservatives in the presence of nucleophiles may be improved by avoiding elevated temperatures and by reducing pH, it is also possible to improve stability by reducing nucleophile levels by using higher grade raw materials which contain lower levels of free amine, especially secondary amines. The effects of pH, temperature and raw material quality on stability in a laundry detergent are shown in Figure 7. Lower levels of DEA are present in 99% TEA versus 85% TEA. KATHON CG/ICP stability is significantly better in the laundry detergent formulated with the purer TEA grade.

5. Add copper salts to the formulation at a level equal to the level of KATHON preservative active ingredient (see Figure 3).

6. Increase the level of KATHON preservative to compensate for the low level of degradation.

For additional information concerning stability and for guidelines to test the compatibility of KATHON CG/ICP, KATHON CG/ICP II and KATHON ICP III preservatives in your formulations, consult Dow Technical Bulletins No. CS-596, “Stability in Surfactants,” No. CS-607, “Determination of ppm Levels of KATHON CG/ICP by HPLC,” or contact your Dow technical representative.

Figure 5

Stability of KATHON™ CG/ICP Preservative in a Surfactant Raw Material

![Graph showing stability of KATHON CG/ICP preservative](image_url)
Compatibility with Other Preservatives
The compatibility of KATHON™ CG/ICP, KATHON CG/ICP II and KATHON ICP III preservatives is excellent with other preservatives frequently used in household and industrial products. In addition, some preservatives, such as formaldehyde donors, can help stabilize KATHON CG/ICP, KATHON CG/ICP II and KATHON ICP III in aggressive environments. More-detailed information can be obtained from your local technical representatives.

Efficacy in Household and Industrial Products
The microbiological performance of KATHON CG/ICP, KATHON CG/ICP II and KATHON ICP III preservatives in most products is excellent. Long-term microbiological protection is obtained employing use levels up to 22.5 ppm active ingredients (0.15% product, as supplied, by weight). Typical use levels for most household and industrial products are in the
range of 5 ppm to 10 ppm active ingredient. For each formulation, it is important to ensure stability of the active ingredients and assess the efficacy through a microbiological challenge test.

Dow typically uses a 4-week challenge test with 2 inoculations of a mixed inoculum, coupled with an analysis of the active ingredients by High-Performance Liquid Chromatography (HPLC). More details of this procedure can be obtained from your nearest Dow sales office.

Growth Rating Description for Tables 1–3

<table>
<thead>
<tr>
<th>Growth Rating</th>
<th>Colony Forming Units/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>< 10</td>
</tr>
<tr>
<td>T</td>
<td>10 to 100</td>
</tr>
<tr>
<td>1+</td>
<td>100 to 1,000</td>
</tr>
<tr>
<td>2+</td>
<td>1,000 to 10,000</td>
</tr>
<tr>
<td>3+</td>
<td>10,000 to 100,000</td>
</tr>
<tr>
<td>4+</td>
<td>>100,000</td>
</tr>
<tr>
<td>ND</td>
<td>Not Determined</td>
</tr>
</tbody>
</table>

Note: All data presented in the tables above for KATHON™ CG/ICP preservative also apply to KATHON CG/ICP II preservative.

Table 1

KATHON™ CG/ICP Preservative Evaluation in a Dishwashing Detergent

<table>
<thead>
<tr>
<th>As Supplied ppm</th>
<th>Active Ingredient ppm</th>
<th>2wks</th>
<th>4wks</th>
<th>6wks</th>
<th>8wks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>3+</td>
<td>4+</td>
<td>4+</td>
<td>4+</td>
</tr>
<tr>
<td>400</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>600</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1,000</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1,500</td>
<td>22.5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 2

Preservation of a Heavy-Duty Liquid Detergent

<table>
<thead>
<tr>
<th>As Supplied ppm</th>
<th>Active Ingredient ppm</th>
<th>2wks</th>
<th>4wks</th>
<th>8wks</th>
</tr>
</thead>
<tbody>
<tr>
<td>KATHON™ CG/ICP Preservatives</td>
<td>0</td>
<td>3+</td>
<td>4+</td>
<td>4+</td>
</tr>
<tr>
<td>300</td>
<td>4.5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>600</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Formalin (37%)</td>
<td>0</td>
<td>3+</td>
<td>4+</td>
<td>4+</td>
</tr>
<tr>
<td>2,700</td>
<td>1,000</td>
<td>3+</td>
<td>4+</td>
<td>4+</td>
</tr>
</tbody>
</table>

Table 3

KATHON™ CG/ICP Preservative Evaluation in a Fabric Softener

<table>
<thead>
<tr>
<th>As Supplied ppm</th>
<th>Active Ingredient ppm</th>
<th>2wks</th>
<th>4wks</th>
<th>6wks</th>
<th>8wks</th>
<th>10wks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>4+</td>
<td>4+</td>
<td>4+</td>
<td>4+</td>
<td>4+</td>
</tr>
<tr>
<td>200</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>400</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Analytical Procedures

High-Performance Liquid Chromatography (HPLC) analysis is the preferred method for determining low levels (0.01-0.15%) of KATHON™ CG/ICP preservatives.
This method can be used to determine KATHON™ CG/ICP, KATHON CG/ICP II and KATHON ICP III preservatives levels in your formulations. If you require detailed information on HPLC methods, please contact your local Dow sales office to request our bulletin “Determination of ppm Levels of KATHON CG/ICP, KATHON CG/ICP II and KATHON ICP III by HPLC” CS-607.

Toxicology, Environmental Hazard, Deactivation and First Aid

For product safety information, refer to Safety Data Sheet (SDS).

Good Manufacturing Practices

A preservative is formulated into household and industrial products principally to protect the products from chance or occasional microbial challenge during production, storage and final customer use. It should not be expected to cope with severe contamination problems brought about by poor manufacturing practices. In the manufacturing plant, it is important that all potential sources of microbial contamination are identified and controlled.

Some of the important sources of microbial contamination include:

- raw materials
- water supplies
- poor housekeeping and plant design
- poor hygiene
- inadequate cleaning and sanitation protocols
- product reworking or recycling

Good manufacturing practices, backed up by regular and effective monitoring programs, are key factors in controlling microbial contamination. For further information, please see Dow publication, “Preventing Microbial Contamination in Manufacturing” CS-626.

Reference

The following can be obtained by contacting your local Dow Technical Representative:

- CS-607 High-Performance Liquid Chromatographic Determination of ppm Levels of KATHON™ CG/ICP, KATHON CG/ICP II and KATHON ICP III Preservatives
- CS-596 Stability in Surfactants
- CS-606 The Environmental Fate of KATHON CG/ICP preservatives
- CS-632 KATHON Preservatives—Mechanism of Action
- CS-626 Preventing Microbial Contamination in Manufacturing
- CS-649 Spill Clean-Up and Deactivation Procedure.

Handling Precautions

Please refer to the Safety Data Sheet (SDS) of this product for precise handling instructions.

The processing and use of industrial chemicals require adequate technical and professional knowledge.

In general, avoid eye and skin contact, wear safety goggles, gloves and protective clothing.

In case of eye or skin contact despite precautionary measures, wash immediately and thoroughly with plenty of warm water and obtain medical attention.

The legal requirements prevailing in your country, especially on working hygiene and in the avoidance of accidents, must be observed.
Storage
Store products in tightly closed original containers at temperatures recommended on the product label.

Disposal Considerations
Dispose in accordance with all local, state (provincial) and federal regulations. Empty containers may contain hazardous residues. This material and its container must be disposed in a safe and legal manner.

It is the user’s responsibility to verify that treatment and disposal procedures comply with local, state (provincial) and federal regulations. Contact your Dow Technical Representative for more information.

Product Stewardship
When considering the use of any Dow product in a particular application, review the latest Safety Data Sheet (SDS) and country-specific product label to ensure the intended use is within the scope of approved uses. Dow has a fundamental concern for all who make, distribute, and use its products, and for the environment in which we live. This concern is the basis for our product stewardship philosophy by which we assess the safety, health, and environmental information on our products and then take appropriate steps to protect employee and public health and our environment. The success of our product stewardship program rests with each and every individual involved with Dow products – from the initial concept and research, to manufacture, use, sale, disposal, and recycle of each product.

Customer Notice
Dow strongly encourages its customers to review both their manufacturing processes and their applications of Dow products from the standpoint of human health and environmental quality to ensure that Dow products are not used in ways for which they are not intended or tested. Dow personnel are available to answer your questions and to provide reasonable technical support. Dow product literature, including Safety Data Sheets (SDS), should be consulted prior to use of Dow products. Current Safety Data Sheets are available from Dow.
For further information visit our website:
www.dowmicrobialcontrol.com
or call:

Central and Eastern Europe:
Turkey +90-216-571-16-00
Russia +7-495-663-78-20
Poland +48-22-543-18-00

Western Europe:
+800-3-694-6367 (toll-free)
+31-115-67-26-26 (phone)
+31-115-67-28-28 (fax)

North America:
+1-800-447-4369 (toll-free)
+1-989-832-1560 (phone)
+1-989-832-1465 (fax)

Middle East and Africa:
UAE +971-4-332-88-66
South Africa +800-99-5578 (toll-free)

Greater China:
Shanghai +86-21-3851-1000
Beijing +86-10-6527-9199
Guangzhou +86-20-3813-0600
Taiwan +886-227-710-00

Southeast Asia:
Philippines +63-2-867-3293
Indonesia +62-21-2995-6273
Singapore +65-6830-4575
+65-6786-6217

Thailand +66-2365-7371
Vietnam +84-8-3822-6008

Malaysia +603-7865-3200

Australia and New Zealand:
+61-3-9226-3500 (phone)
+61-3-9226-3562 (fax)

Japan and Korea:
Japan +81-3-5460-2261
Korea +32-2-3490-4348

Indian Subcontinent:
+91-22-6793-4953 (phone)
+91-22-6793-4924 (fax)

Latin America:
+55-11-5188-9555 (phone)
+55-11-5188-9400 (fax)

Other Global Areas:
+1-989-832-1560 (phone)
+1-989-832-1465 (fax)

Notice: No freedom from infringement of any patent owned by Dow or others is to be inferred. Because use conditions and applicable laws may differ from one location to another and may change with time, Customer is responsible for determining whether products and the information in this document are appropriate for Customer’s use and for ensuring that Customer’s workplace and disposal practices are in compliance with applicable laws and other government enactments. The product shown in this literature may not be available for sale and/or available in all geographies where Dow is represented. The claims made may not have been approved for use in all countries. Dow assumes no obligation or liability for the information in this document. References to “Dow” or the “Company” mean the Dow legal entity selling the products to Customer unless otherwise expressly noted. NO WARRANTIES ARE GIVEN; ALL IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE ARE EXPRESSLY EXCLUDED.

USE BIOCIDES SAFELY. ALWAYS READ THE LABEL AND PRODUCT INFORMATION BEFORE USE.