High Clarity. High Gloss. Low VOC.

ROSHIELD™ 4000 Acrylic Resin is a new, self-crosslinking polymer that’s making a difference in waterborne wood coatings.

- Acrylic resin is based on novel technology that crosslinks rapidly after film formation. This enhances key performance properties such as early chemical resistance, block and print resistance, and hardness development.
- Crosslinking doesn’t rely on oxidative curing, so there is no yellowing even when applied over formaldehyde-emitting substrates such as engineered wood or varnish-coated trim.

ROSHIELD™ 4000 Acrylic Resin offers two-component performance in a one-component waterborne system.

Key Features
- **Self-crosslinking**
- **Self-sealing**
- **Non-yellowing**
- **Excellent adhesion, clarity and gloss**
- **Excellent appearance on dark and light woods**
- **Superior chemical resistance**
- **Excellent block and print resistance**
- **Low-VOC capable**
- **Easy to use**
- **One component system**

How it works
- Accelerates self-crosslinking after film formation.
- Crosslinking after film formation enhances early chemical and solvent resistance.
- Allows for optimal film formation with proper formulation technique.

Applications
ROSHIELD 4000 Acrylic Resin is ideally suited to factory and field-applied waterborne interior wood finishes. It is recommended as a sealer and topcoat in clear coatings and offers excellent appearance over both dark and light woods. The novel self-crosslinking technology does not yellow over formaldehyde-emitting substrates and basecoats, which allows for the use of this technology over a broader range of wood applications than current self-crosslinking acrylic resins. ROSHIELD 4000 Acrylic Resin also may be used in pigmented sealers and topcoats, such as coatings for kitchen and bath cabinetry and furniture. Our internal testing shows that sealer/topcoat systems based on ROSHIELD 4000 Acrylic Resin pass KCMA standards for cabinet coatings.

Clearly Different

SB Alkyd / Urea Sealer

<table>
<thead>
<tr>
<th>SB Alkyd / Urea Sealer</th>
<th>WB-3 Clear Topcoat</th>
<th>WB-4 Clear Topcoat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Self-Crosslinking</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 1.
Clear topcoats applied over solvent-borne alkyd/urea conversion varnish sealer that releases formaldehyde. On left, the waterborne coating that relies on an oxidative curing mechanism turns yellow. At right, the waterborne coating based on ROSHIELD 4000 Acrylic Resin stays clear.

Figure 2.
Results of testing pigmented coatings as gloss white enamels. ROSHIELD™ 4000 Acrylic Resin vs. Conventional Self-Crosslinking Acrylic

<table>
<thead>
<tr>
<th>Formulation Details</th>
<th>Konig Hardness (seconds)</th>
<th>Block Resistance (1 day dry)</th>
<th>Block Resistance (7 day dry)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROSHIELD™ 4000 Acrylic Resin</td>
<td>166 19 33.2</td>
<td>19 33 46 57 67</td>
<td>6 9 10 10</td>
</tr>
<tr>
<td>Conventional</td>
<td>165 19 33.2</td>
<td>16 22 27 33 35</td>
<td>8 9 9 10</td>
</tr>
</tbody>
</table>

Figure 3.
MEK resistance (double rubs) vs. cure time of clear formulation based on ROSHIELD 4000 Acrylic Resin compared to the current waterborne acrylic with self-crosslinking using oxidative curing mechanism. ROSHIELD 4000 Acrylic Resin allows for faster development of chemical resistance.

Figure 4.
Some furniture chemical resistance testing of a clear formulation based on ROSHIELD 4000 Acrylic Resin compared to the current waterborne acrylic with self-crosslinking using oxidative curing mechanism and a WB thermoplastic acrylic. The system based on ROSHIELD 4000 Acrylic Resin has good chemical resistance compared to the other systems. The tests were completed after 7 days cure over maple substrate and were rated on a scale of 1 to 10, 10=no effect.
High Clarity, High Gloss. Low VOC.

ROSHIELD™ 4000 Acrylic Resin is a new, self-crosslinking polymer that’s making a difference in waterborne wood coatings.

- Acrylic resin is based on novel technology that crosslinks rapidly after film formation. This enhances key performance properties such as early chemical resistance, block and print resistance, and hardness development.
- Crosslinking doesn’t rely on oxidative curing, so there is no yellowing even when applied over formaldehyde-emitting substrates such as engineered wood or varnish-coated trim.

ROSHIELD™ 4000 Acrylic Resin offers two-component performance in a one-component waterborne system.

Key Features
- Self-crosslinking
- Self-sealing
- Non-yellowing
- Excellent adhesion, clarity and gloss
- Excellent appearance on dark and light woods
- Superior chemical resistance
- Low-VOC capable
- Easy to use
- One component system
- Self-crosslinking technology does not yellow over dark and light woods. The novel self-crosslinking technology allows for the use of this technology over a broader range of wood applications than current self-crosslinking acrylic resins. ROSHIELD 4000 Acrylic Resin also may be used in pigmented sealers and topcoats, such as coatings for kitchen and bath cabinetry and furniture. Our internal testing shows that sealer/topcoat systems based on ROSHIELD 4000 Acrylic Resin pass KCMA standards for cabinet coatings.

How it works
- Accelerates self-crosslinking after film formation.
- Crosslinking after film formation enhances early chemical and solvent resistance.
- Allows for optimal film formation with proper formulation technique.

Applications
ROSHIELD 4000 Acrylic Resin is ideally suited to factory and field-applied waterborne interior wood finishes. It is recommended as a sealer and topcoat in clear coatings and offers excellent appearance over both dark and light woods. The novel self-crosslinking technology does not yellow over formaldehyde-emitting substrates and basecoats, which allows for the use of this technology over a broader range of wood applications than current self-crosslinking acrylic resins. ROSHIELD 4000 Acrylic Resin also may be used in pigmented sealers and topcoats, such as coatings for kitchen and bath cabinetry and furniture. Our internal testing shows that sealer/topcoat systems based on ROSHIELD 4000 Acrylic Resin pass KCMA standards for cabinet coatings.

Clearly Different

Figure 1. Clear topcoats applied over solvent-borne alkyd/urea conversion varnish sealer that releases formaldehyde. On left, the waterborne coating that relies on an oxidative curing mechanism turns yellow. At right, the waterborne coating based on ROSHIELD 4000 Acrylic Resin stays clear.

Figure 2. Results of testing pigmented coatings as gloss white enamels.

Figure 3. MEK resistance (double rubs) vs. cure time of clear formulation based on ROSHIELD 4000 Acrylic Resin compared to the current waterborne acrylic with self-crosslinking using oxidative curing mechanism. ROSHIELD 4000 Acrylic Resin allows for faster development of chemical resistance.

Figure 4. Some furniture chemical resistance testing of a clear formulation based on ROSHIELD 4000 Acrylic Resin compared to the current waterborne acrylic with self-crosslinking using oxidative curing mechanism and a WB thermoplastic acrylic. The system based on ROSHIELD 4000 Acrylic Resin has good chemical resistance compared to the other systems. The tests were completed after 7 days cure over maple substrate and were rated on a scale of 1 to 10, 10=no effect.

ROSHIELD™ 4000 Acrylic Resin vs. Conventional Self-Crosslinking Acrylic

<table>
<thead>
<tr>
<th>Formulation Details</th>
<th>Konig Hardness (seconds)</th>
<th>Block Resistance (1 day dry)</th>
<th>Block Resistance (7 day dry)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROSHIELD™ 4000 Acrylic Resin</td>
<td>166 19 33.2 4 hr</td>
<td>1 d 4 d 7 d 14 d 30 min</td>
<td>30 min at 60°C 16 hr RT</td>
</tr>
<tr>
<td>Conventional Self-Crosslinking Acrylic</td>
<td>165 19 33.2 16 hr 22 27 33 38 8 8</td>
<td>6 9 10 10 30 min at 60°C RT</td>
<td></td>
</tr>
</tbody>
</table>

Print Resistance (1 day dry)

<table>
<thead>
<tr>
<th>ROSHIELD 4000 Acrylic Resin</th>
<th>30 min at 60°C</th>
<th>16 hr RT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional Self-Crosslinking Acrylic</td>
<td>8 9 9</td>
<td>9 10</td>
</tr>
</tbody>
</table>

Print Resistance (7 day dry)

<table>
<thead>
<tr>
<th>ROSHIELD 4000 Acrylic Resin</th>
<th>30 min at 60°C</th>
<th>16 hr RT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional Self-Crosslinking Acrylic</td>
<td>8 9 9</td>
<td>9 10</td>
</tr>
</tbody>
</table>
Notice: No freedom from infringement of any patent owned by Dow or others is to be inferred. Because use conditions and applicable laws may differ from one location to another and may change with time, Customer is responsible for determining whether products and the information in this document are appropriate for Customer's use and for ensuring that Customer's workplace and disposal practices are in compliance with applicable laws and other government enactments. The product shown in this literature may not be available for sale and/or available in all geographies where Dow is represented. The claims made may not have been approved for use in all countries. Dow assumes no obligation or liability for the information in this document. References to "Dow" or the "Company" mean the Dow legal entity selling the products to Customer unless otherwise expressly noted. NO WARRANTIES ARE GIVEN; ALL IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE ARE EXPRESSLY EXCLUDED.

™®Trademark of The Dow Chemical Company ("Dow") or an affiliated company of Dow.

Dow Coating Materials
www.dowcoatingmaterials.com

Form No. 884-00087-0412-NAR-EN EST

Call toll-free from the U.S. and Canada: 1-800-693-3311
Visit our web site: www.dowcoatingmaterials.com

For more information or to order a product sample, please contact your Dow Coating Materials customer service representative.