DOW FILMTEC™ Membranes
Cleaning Procedures for DOW FILMTEC FT30 Elements

The following are general recommendations for cleaning DOW FILMTEC™ FT30 elements. More detailed procedures for cleaning a reverse osmosis (RO) system are typically included in the operating manual provided by the system supplier. It should be emphasized that frequent cleaning is not required for a properly designed and properly operated RO system however, because of the FT30 membrane’s distinct combination of pH range and temperature resistance, cleaning may be accomplished very effectively.

Cleaning Requirements

In normal operation, the membrane in reverse osmosis elements can become fouled by mineral scale, biological matter, colloidal particles and insoluble organic constituents. Deposits build up on the membrane surfaces during operation until they cause loss in normalized permeate flow, loss of normalized salt rejection, or both.

Elements should be cleaned when one or more of the below mentioned parameters are applicable:

- The normalized permeate flow drops 10%
- The normalized salt passage increases 5 - 10%
- The normalized pressure drop (feed pressure minus concentrate pressure) increases 10 - 15%

If you wait too long, cleaning may not restore the membrane element performance successfully. In addition, the time between cleanings becomes shorter as the membrane elements will foul or scale more rapidly.

Differential Pressure (ΔP) should be measured and recorded across each stage of the array of pressure vessels. If the feed channels within the element become plugged, the ΔP will increase. It should be noted that the permeate flux will drop if feedwater temperature decreases. This is normal and does not indicate membrane fouling.

A malfunction in the pretreatment, pressure control, or increase in recovery can result in reduced product water output or an increase in salt passage. If a problem is observed, these causes should be considered first. The element(s) may not require cleaning. A computer program called FTNORM is available from DW&PS for normalizing performance data of DOW FILMTEC™ RO membranes. This program can be used to assist in determining when to clean and can be downloaded from our web site (www.dowwaterandprocess.com).
Safety Precautions

1. When using any chemical indicated here in subsequent sections, follow accepted safety practices. Consult the chemical manufacturer for detailed information about safety, handling and disposal.

2. When preparing cleaning solutions, ensure that all chemicals are dissolved and well mixed before circulating the solutions through the elements.

3. It is recommended the elements be flushed with good-quality chlorine-free water (20°C minimum temperature) after cleaning. Permeate water or deionized water are recommended. Care should be taken to operate initially at reduced flow and pressure to flush the bulk of the cleaning solution from the elements before resuming normal operating pressures and flows. Despite this precaution, cleaning chemicals will be present on the permeate side following cleaning. Therefore, the permeate must be diverted to drain for at least 30 minutes or until the water is clear when starting up after cleaning.

4. During recirculation of cleaning solutions, the maximum temperature must not be exceeded. The maximum allowed temperature is dependent on pH and membrane type. Table 1 contains information on the maximum allowed temperatures.

5. For elements greater than six inches in diameter, the flow direction during cleaning must be the same as during normal operation to prevent element telescoping, because the vessel thrust ring is installed only on the reject end of the vessel. This is also recommended for smaller elements. Equipment for cleaning is illustrated below.

Cleaning System Flow Diagram

![Flow Diagram](chart.png)

- **TANK**: Chemical Mixing Tank, polypropylene or FRP
- **IH**: Immersion Heater (may be replaced by cooling coil for some site locations)
- **TI**: Temperature Indicator
- **TC**: Temperature Control
- **LLS**: Lower Level Switch to shut off pump
- **SS**: Security Screen—100 mesh
- **PUMP**: Low-Pressure Pump, 316 SS or non-metallic composite
- **CF**: Cartridge Filter, 5-10 micron polypropylene with PVC, FRP, or SS housing

Legend
- **DP**: Differential Pressure Gauge
- **FI**: Flow Indicator
- **FT**: Flow Transmitter (optional)
- **PI**: Pressure Indicator
- **V1**: Pump Recirculation Valve, CPVC
- **V2**: Flow Control Valve, CPVC
- **V3**: Concentrate Valve, CPVC 3-way valve
- **V4**: Permeate Valve, CPVC 3-way valve
- **V5**: Permeate Inlet Valve, CPVC
- **V6**: Tank Drain Valve, PVC, or CPVC
- **V7**: Purge Valve, SS, PVC, or CPVC

Trademark of The Dow Chemical Company (“Dow”) or an affiliated company of Dow
The equipment for cleaning is shown in the Cleaning System Flow Diagram. The pH of cleaning solutions used with FILMTEC™ elements can be in the range of 1 to 13 (see Table 1), and therefore non-corroding materials should be used in the cleaning system.

1. The mixing tank should be constructed of polypropylene or fiberglass-reinforced plastic (FRP). The tank should be provided with a removable cover and a temperature gauge. The cleaning procedure is more effective when performed at a warm temperature, and it is recommended that the solution be maintained according to the pH and temperature guidelines listed in Table 1. It is not recommended to use a cleaning temperature below 20°C because of the very slow chemical kinetics at low temperatures. In addition, chemicals such as sodium lauryl sulfate might precipitate at low temperatures. Cooling may also be required in certain geographic regions, so both heating/cooling requirements must be considered during the design. A rough rule of thumb in sizing a cleaning tank is to use approximately the empty pressure vessels volume and then add the volume of the feed and return hoses or pipes. For example, to clean ten 8-inch diameter pressure vessels with six elements per vessel, the following calculations would apply:

A. Volume in Vessels
\[V_1 = \pi r^2 L = 3.14 \text{(4 in)}^2 (20 \text{ ft}) \left(\frac{7.48 \text{ gal}}{\text{ft}^3} \right) / \left(144 \text{ in}^2/\text{ft}^2 \right) \]
\[V_1 = 52 \text{ gal/vessel} (0.2 \text{ m}^3) \]
\[V_{10} = 52 \times 10 = 520 \text{ gal} (1.97 \text{ m}^3) \]

B. Volume in Pipes, assume 50 ft. length total 4" Sch 80 pipe
\[V_p = \pi r^2 L \]
\[= 3.14 \text{(1.91 in)}^2 (50 \text{ ft}) \left(\frac{7.48 \text{ gal}}{\text{ft}^3} \right) / \left(144 \text{ in}^2/\text{ft}^2 \right) \]
\[= 30 \text{ gals} (0.11 \text{ m}^3) \]
\[V_{ct} = V_{10} + V_p = 520 + 30 = 550 \text{ gal.} \]

Therefore, the cleaning tank should be about 550 gals (2.1 m³).

2. The cleaning pump should be sized for the flows and pressures given in Table 2, making allowances for pressure loss in the piping and across the cartridge filter. The pump should be constructed of 316 SS or nonmetallic composite polyesters.

3. Appropriate valves, flow meters, and pressure gauges should be installed to adequately control the flow. Service lines may be either hard piped or hoses. In either case, the flow rate should be a moderate 10 ft/sec (3 m/sec) or less.

Cleaning Elements
In Situ
There are six steps in the cleaning of elements:

1. Make up cleaning solution.
2. Low-flow pumping. Pump mixed, preheated cleaning solution to the vessel at conditions of low flow rate (about half of that shown in Table 2) and low pressure to displace the process water. Use only enough pressure to compensate for the pressure drop from feed to concentrate. The pressure should be low enough that essentially no or little permeate is produced. A low pressure minimizes redeposition of dirt on the membrane. Dump the concentrate, as necessary, to prevent dilution of the cleaning solution.
3. Recycle. After the process water is displaced, cleaning solution will be present in the concentrate stream. Then recycle the concentrate and permeate to the cleaning solution tank and allow the temperature to stabilize. Measure the pH of the solution and adjust the pH if needed.
Table 1. pH range and temperature limits during cleaning

<table>
<thead>
<tr>
<th>Element type</th>
<th>Max Temp 50°C (122°F) pH range</th>
<th>Max Temp 45°C (113°F) pH range</th>
<th>Max Temp 35°C (95°F) pH range</th>
<th>Max Temp 25°C (77°F) pH range</th>
</tr>
</thead>
<tbody>
<tr>
<td>BW30, BW30LE, LE, XLE, TW30, TW30HP, NF90, LC</td>
<td>Please contact Dow for assistance</td>
<td>1 - 10.5</td>
<td>1 - 12</td>
<td>1 - 13</td>
</tr>
<tr>
<td>SW30HR, SW30HR LE, SW30XLE, SW30</td>
<td>Please contact Dow for assistance</td>
<td>1 - 10.5</td>
<td>1 - 12</td>
<td>1 - 13</td>
</tr>
<tr>
<td>NF200, NF270</td>
<td>Not allowed</td>
<td>3 - 10</td>
<td>1 - 11</td>
<td>1 - 12</td>
</tr>
<tr>
<td>SR90</td>
<td>Not allowed</td>
<td>3 - 10</td>
<td>1 - 11</td>
<td>1 - 12</td>
</tr>
</tbody>
</table>

Table 2. Recommended feed flow rate per pressure vessel during high flow rate recirculation

<table>
<thead>
<tr>
<th>Feed Pressure¹ (psig)</th>
<th>Feed Pressure (bar)</th>
<th>Element Diameter (inches)</th>
<th>Feed Flow Rate per Pressure Vessel (gpm)</th>
<th>Feed Flow Rate per Pressure Vessel (m³/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-60</td>
<td>1.5-4.0</td>
<td>2.5</td>
<td>3-5</td>
<td>0.7-1.2</td>
</tr>
<tr>
<td>20-60</td>
<td>1.5-4.0</td>
<td>4²</td>
<td>8-10</td>
<td>1.8-2.3</td>
</tr>
<tr>
<td>20-60</td>
<td>1.5-4.0</td>
<td>6</td>
<td>16-20</td>
<td>3.6-4.5</td>
</tr>
<tr>
<td>20-60</td>
<td>1.5-4.0</td>
<td>8</td>
<td>30-40</td>
<td>6.9-1.1</td>
</tr>
<tr>
<td>20-60</td>
<td>1.5-4.0</td>
<td>8³</td>
<td>35-45</td>
<td>8.0-10.2</td>
</tr>
</tbody>
</table>

¹. Dependent on number of elements in pressure vessel.
². 4-inch full-fit elements should be cleaned at 12-14 gpm (2.7-3.2 m³/hr).
³. For full-fit and 440 sq. ft. area elements.

4. Soak. Turn the pump off and allow the elements to soak. Sometimes a soak period of about 1 hour is sufficient. For difficult fouling an extended soak period is beneficial; soak the elements overnight for 10-15 hours. To maintain a high temperature during an extended soak period, use a slow recirculation rate (about 10 percent of that shown in Table 2).

5. High-flow pumping. Feed the cleaning solution at the rates shown in Table 2 for 30-60 minutes. The high flow rate flushes out the foulants removed from the membrane surface by the cleaning. If the elements are heavily fouled, a flow rate which is 50 percent higher than shown in Table 2 may aid cleaning. At higher flow rates, excessive pressure drop may be a problem. The maximum recommended pressure drops are 15 psi per element or 50 psi per multi-element vessel, whichever value is more limiting. Please note that the 15 psi per element or the 50 psi per multi-element vessel should NOT be used as a cleaning criteria. Cleaning is recommended when the pressure drop increases 15%. Pressure drop above 50 psi in a single stage may cause significant membrane damage.

6. Flush out. RO permeate or deionized water is recommended for flushing out the cleaning solution. Prefiltered raw water or feed water should be avoided as its components may react with the cleaning solution: precipitation of foulants may occur in the membrane elements. The minimum flush out temperature is 20°C.
Cleaning Tips

1. It is strongly recommended to clean the stages of the RO or NF system separately. This is to avoid having the removed foulant from stage 1 pushed into stage 2 resulting in minimal performance improvement from the cleaning. If the system consists of 3 stages, stage 2 and stage 3 should also be cleaned separately. For multi-stage systems, while each stage should be cleaned separately, the flushing and soaking operations may be done simultaneously in all stages. Fresh cleaning solution needs to be prepared when the cleaning solution becomes turbid and/or discolored. High-flow recirculation, however, should be carried out separately for each stage, so the flow rate is not too low in the first stage or too high in the last. This can be accomplished either by using one cleaning pump and operating one stage at a time, or by using a separate cleaning pump for each stage.

2. The fouling or scaling of elements typically consists of a combination of foulants and scalants, for instance a mixture of organic fouling, colloidal fouling and biofouling. Therefore, it is very critical that the first cleaning step is wisely chosen. FilmTec strongly recommends alkaline cleaning as the first cleaning step. Acid cleaning should only be applied as the first cleaning step if it is known that only calcium carbonate or iron oxide/hydroxide is present on the membrane elements.

Acid cleaners typically react with silica, organics (for instance humic acids) and biofilm present on the membrane surface which may cause a further decline of the membrane performance. Sometimes, an alkaline cleaning may restore this decline that was caused by the acid cleaner, but often an extreme cleaning will be necessary. An extreme cleaning is carried out at pH and temperature conditions that are outside the membrane manufacturer’s guidelines or by using cleaning chemicals that are not compatible with the membrane elements. An extreme cleaning should only be carried out as a last resort as it can result in membrane damage.

If the RO system suffers from colloidal, organic fouling or biofouling in combination with calcium carbonate, then a two-step cleaning program will be needed: alkaline cleaning followed by an acid cleaning. The acid cleaning may be performed when the alkaline cleaning has effectively removed the organic fouling, colloidal fouling and biofouling.

3. Always measure the pH during cleaning. If the pH increases more than 0.5 pH units during acid cleaning, more acid needs to be added. If the pH decreases more than 0.5 pH units during alkaline cleaning, more caustic needs to be added.

4. Long soak times. It is possible for the solution to be fully saturated and the foulants can precipitate back onto the membrane surface. In addition, the temperature will drop during this period, therefore the soaking becomes less effective. It is recommended to circulate the solution regularly in order to maintain the temperature (temperature should not drop more than 5°C) and add chemicals if the pH needs to be adjusted.

5. Turbid or strong colored cleaning solutions should be replaced. The cleaning is repeated with a fresh cleaning solution.

6. If the system has to be shutdown for more than 24 hours, the elements should be stored in 1% w/w sodium metabisulfite solution.
In addition to applying the correct cleaning sequence (alkaline cleaning step first), selecting the correct pH is very critical for optimum foulant removal. If foulant is not successfully removed, the membrane system performance will decline faster as it is easier for the foulant to deposit on the membrane surface area. The time between cleanings will become shorter, resulting in shorter membrane element life and higher operating and maintenance costs.

Most effective cleaning allows longer system operating time between cleanings and results in the lowest operating costs.

Figure 1 and 2 below show the importance of selecting the right pH for successful cleaning.

Figure 1. Effect of pH on the removal of calcium carbonate

Calcium carbonate is best removed by cleaning with hydrochloric acid at pH 1-2.

Figure 2. Effect of pH on the removal of biofouling

Biofouling is best removed by cleaning at pH 12.
Cleaning Chemicals

Table 3 lists suitable cleaning chemicals. Acid cleaners and alkaline cleaners are the standard cleaning chemicals. The acid cleaners are used to remove inorganic precipitates including iron, while the alkaline cleaners are used to remove organic fouling including biological matter. Sulfuric acid should never be used for cleaning because of the risk of calcium sulfate precipitation. Reverse osmosis permeate or deionized water should be used for the preparation of cleaning solutions.

Table 3. Simple cleaning solutions for FT30 membrane

<table>
<thead>
<tr>
<th>Cleaner</th>
<th>Fouland</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1% (W) NaOH and 1.0% (W) Na₂EDTA, pH 12, 35°C max.</td>
<td>Inorganic Salts (for example, CaCO₃) Preferred</td>
</tr>
<tr>
<td>0.1% (W) NaOH and 0.025% (W) Na-DSS, pH 12, 35°C max.</td>
<td>Sulfate Scales (CaSO₄, BaSO₄) Preferred</td>
</tr>
<tr>
<td>0.2% (W) HCl, 25°C and pH 1 - 2</td>
<td>Metal Oxides (for example, iron) Preferred</td>
</tr>
<tr>
<td>1.0% (W) Na₂S₂O₄, 25°C and pH 5</td>
<td>Inorganic Colloids (silt) Preferred</td>
</tr>
<tr>
<td>0.5% (W) H₃PO₄, 25 °C and pH 1 - 2</td>
<td>Silica Alternative</td>
</tr>
<tr>
<td>1.0% (W) NH₂SO₃H, 25°C and pH 3 - 4</td>
<td>Biofilms Alternative</td>
</tr>
</tbody>
</table>

The temperatures and pH listed in table 3 are applicable for BW30, BW30LE, LE, XLE, TW30, TW30HP, SW30HR, SW30HR LE, SW30XLE, SW30 and NF90 membrane elements. For more information regarding the allowed temperatures and pH for cleaning, please refer to table 1.

Notes:
1. (W) denotes weight percent of active ingredient.
2. Fouland chemical symbols in order used: CaCO₃ is calcium carbonate; CaSO₄ is calcium sulfate; BaSO₄ is barium sulfate.
3. Cleaning chemical symbols in order used: NaOH is sodium hydroxide; Na₂EDTA is the tetra-sodium salt of ethylene diamine tetraacetic acid and is available from Dow under the trademark VERSENE™ 100 and VERSENE 220 crystals; Na-DSS is sodium salt of dodecylsulfate; Sodium Laurel Sulfate; HCl is hydrochloric acid (Muratic Acid); H₃PO₄ is phosphoric acid; NH₂SO₃H is sulfamic acid; Na₂S₂O₄ is sodium hydrosulfite.
4. For effective sulfate scale cleaning, the condition must be caught and treated early. Adding NaCl to the cleaning solution of NaOH and Na₂EDTA may help as sulfate solubility increases with increasing salinity. Successful cleaning of sulfate scales older than 1 week is doubtful.
5. Citric Acid is another cleaning alternative for metal oxides and calcium carbonate scale. It is less effective (see also figure 1 of this document). It may contribute to biofouling especially when it is not properly rinsed out.

NOTICE: The use of this product does not necessarily guarantee the removal of cysts and pathogens from water. Effective cyst and pathogen reduction is dependent on the complete system design and on the operation and maintenance of the system.

NOTICE: No freedom from any patent owned by Dow or others is to be inferred. Because use conditions and applicable laws may differ from one location to another and may change with time, Customer is responsible for determining whether products and the information in this document are appropriate for Customer’s use and for ensuring that Customer’s workplace and disposal practices are in compliance with applicable laws and other government enactments. The product shown in this literature may not be available for sale and/or available in all geographies where Dow is represented. The claims made may not have been approved for use in all countries. Dow assumes no obligation or liability for the information in this document. References to “Dow” or the “Company” mean the Dow legal entity selling the products to Customer unless otherwise expressly noted. NO WARRANTIES ARE GIVEN; ALL IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE ARE EXPRESSLY EXCLUDED.