Conserve On-Farm is a powerful new grain protectant that provides complete control of all common stored grain insect pests.

Conserve™ On-Farm
GRAIN PROTECTOR

Dow AgroSciences
Solutions for the Growing World
WHAT IS CONSERVE™ ON-FARM?

Conserve On-Farm is a new grain protectant marketed by Dow AgroSciences. Conserve On-Farm has three active ingredients to control all major insect pests of stored grain, including the resistant lesser grain borer (LGB). Providing six to nine months of control and with a nil withholding period (WHP), Conserve On-Farm maximises grain marketing flexibility. Maximum residue limits (MRLs) have been established with key trading partners and there are no meat residue bioaccumulation issues.

The power of three active ingredients
Conserve On-Farm contains three active ingredients and is the combination of two products - Part A and Part B. Part A (chlorpyrifos-methyl plus s-methoprene) provides three to nine months of control of lesser grain borer (LGB), rice weevil, granary weevil, rust-red flour beetle, confused flour beetle, saw-toothed grain beetle, tropical warehouse moth and maize weevil. LGB has developed resistance to methoprene in some areas, which is why the combination of Part A with Part B (spinosad) makes Conserve On-Farm a powerful new grain protectant that provides complete control of all common stored grain insect pests.

Grain pest Controlled

<table>
<thead>
<tr>
<th>Grain pest</th>
<th>Controlled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lesser grain borer (Rhyzopertha dominica)</td>
<td>✓</td>
</tr>
<tr>
<td>Rice weevil (Sitophilus oryzae)</td>
<td>✓</td>
</tr>
<tr>
<td>Granary weevil (Sitophilus granarius)</td>
<td>✓</td>
</tr>
<tr>
<td>Rust-red flour beetle (Tribolium castaneum)</td>
<td>✓</td>
</tr>
<tr>
<td>Confused flour beetle (Tribolium confusum)</td>
<td>✓</td>
</tr>
<tr>
<td>Saw-toothed grain beetle (Oryzaephilus spp.)</td>
<td>✓</td>
</tr>
<tr>
<td>Tropical warehouse moth (Cadra cautella)</td>
<td>✓</td>
</tr>
<tr>
<td>Maize weevil (Sitophilus zeamais)</td>
<td>✓</td>
</tr>
<tr>
<td>Flat grain beetle (Cryptolestes spp.)</td>
<td>✓</td>
</tr>
</tbody>
</table>

CONSERVE ON-FARM IS A COMBINATION PACK OF TWO PARTS THAT ARE APPLIED TOGETHER:

1 × 5 L of Part A
2 × 1 L of Part B

Using Part A and Part B together is very important to get control of the complete spectrum of insects.

Part A (chlorpyrifos-methyl and S-methoprene) controls all stored grain insect pests other than the resistant lesser grain borer (Rhyzopertha dominica). Part B (spinosad) is very effective on the lesser grain borer, including resistant strains, but has little to no activity on other key species.
Controls resistant strains of lesser grain borer

Global and Australian trials have proven the effectiveness of spinosad in controlling lesser grain borer. Trials conducted using wheat treated in on-farm storages showed that spinosad at 1 ppm gave complete control out to 12 months (the longest period any of the trials ran for).

Nine months control of lesser grain borer

A study conducted by Dr Greg Daglish and Dr Manoj Nayak of Department of Agriculture, Fisheries and Forestry, Queensland, was undertaken to determine the persistence and efficacy of spinosad against LGB in wheat stored for nine months at 30°C and 55% or 70% relative humidity. Wheat was treated with spinosad and sampled after 0, 1.5, 3, 4.5, 6, 7.5 and 9 months storage for bioassays and residue analyses.

The laboratory study showed that spinosad was completely effective against LGB for nine months, with 100% adult mortality and no live adults produced after 14 days of exposure in warm temperatures and high relative humidity, indicating that spinosad is an effective grain protectant in climates such as Australia.

Summary across trials

Not only are adults controlled, but F1 progeny production is enormously reduced. As spinosad is active against adults out to 12 months without any drop in efficacy, any progeny at nine months will also be controlled.

The connection between low or marginal use rates and selection for resistance is well documented – and for that reason the 0.96 ppm spinosad rate has been chosen as the label use rate.
NEW MODE OF ACTION COUNTERS GROWING RESISTANCE PROBLEM

“Resistance is a huge issue. We’ve been using chemicals that didn’t work because there was nothing else on the market. The release of Conserve™ On-Farm is critical to our industry to fight resistance and control insect pests.”

Peter Smith, Manildra Grain, Moree.

Australia’s grain industry relies heavily on insecticides to both fumigate and protect grain so that it meets market requirements for insect-free grain. Resistance of grain insects to phosphine fumigation and protectant insecticides is becoming a major problem in Australia. It is expected that the number of resistant insects found will increase over the next five years and is likely to extend across all key grain growing regions.

Prolonging the effective life and availability of fumigants and insecticides, through careful management of resistance, is in the interests of everyone involved in the grains industry.

The table below is a general guide to the resistance status of the main insect pests of stored grain in Australia.

This table indicates that there is a clear need for a grain protectant with a new mode of action to manage resistant LGB. Conserve On-Farm represents the first new mode of action insecticide for managing insect control in stored cereal grains since the early 1990s. With three modes of action, Conserve On-Farm will control all major insect pests of stored grain for up to nine months.

Conserve On-Farm can also be used strategically in sealable storages as a break treatment if phosphine resistance is suspected.
INSECTICIDE RESISTANCE MANAGEMENT

The best way to avoid or delay the development of resistance is to maximise the use of non-chemical (“cultural”) control measures while making responsible use of chemicals to disinfest or protect grain when required. Fumigants, diatomaceous earth, structural clean-downs and grain protectants all have a place in a resistance management plan.

Conserve™ On-Farm can only be applied once to any parcel of grain. Any other treatment (made before or after Conserve On-Farm) must not be made with a Conserve product. Ideally, Conserve On-Farm will be use as part of a rotational strategy to ensure the longevity of each product. Every second year rotate to another grain protectant with a different mode of action, or use a fumigant in gas-tight storage.

If a grain protectant treatment unexpectedly fails to control the target species, it is imperative that the same product (or product with the same mode of action) is not re-applied. Switch to an approved product from a different chemical group.

Please refer to GRDC’s June 2013 Grain Storage Fact Sheet for more information on techniques to manage insecticide resistance developing in stored grain.
Conserve™ On-Farm (applied at the label rate) treats grain at just below 1 ppm (1 g spinosad/tonne of grain). There is a nil withholding period for human and animal consumption, and importantly there are no meat residue bioaccumulation concerns for livestock fed with treated grain. An Australian cereal grains maximum residue limit (MRL) has been set for spinosad at 1 ppm, with other markets varying from 1.5 to 2 ppm depending on the country and commodity treated. Due to the slow degradation of spinosad, in short to mid-term storage scenarios, the residue on the grain at out-turn will be at – or just below – the original level at treatment (i.e. at the Australian MRL) as indicated in the graph below (Dow AgroSciences internal trial).

To ensure that there is no risk to trade it is important to ensure that any grain protectant containing spinosad is only applied once.

MRLs for spinosad in cereal grains have been established in all key Australian cereal grain markets including, Australian domestic, EU, Japan, USA, Taiwan and all countries that accept Codex residue limits. These MRLs (ppm) are summarised in the table below:

In Australia, MRLs are set by the Australian Pesticides and Veterinary Medicines Authority (APVMA) (http://www.apvma.gov.au/residues/standard.php). Australian MRLs may differ from those established by foreign countries and the International Codex Alimentarius Commission (“Codex”). Therefore, grain exporters must be aware of MRLs of importing countries and which countries accept Codex MRLs. Information on international MRLs may be accessed directly from foreign government websites or the National Residue Survey (NRS) grains database at: http://www.daff.gov.au/agriculture-food/nrs/nrs-australian-and-overseas-mrl-database. MRLs for the Reldan component of Conserve On-Farm have not changed and can also be found by following the links above.

Feeding or selling treated grain

Despite a nil WHP for grain treated with Conserve On-Farm, grain should not be moved for 24 hours after it has been treated. This is to allow the product time to bind to the grain.

Which commodities can be treated with Conserve On-Farm?

Conserve On-Farm is registered for use on all cereal grains, excluding, maize, malting barley and rice. Conserve On-Farm should NOT be applied to any cereal grain to be sold into markets designated Pesticide Residue Free (PRF). Durum wheat is often designated PRF, as it is regularly sold into European markets, which have low MRLs for grain protectant compounds.

Oilseeds and pulses (and the processed fractions of these commodities) must not be treated with Conserve On-Farm because MRLs have not been established for these commodities.

*“Other cereal grains” refers to all cereal grains, except rice (brown rice), wheat, barley, rye, corn (maize), and buckwheat.

<table>
<thead>
<tr>
<th></th>
<th>Wheat</th>
<th>Barley</th>
<th>Sorghum</th>
<th>Oats</th>
<th>Rye</th>
<th>Other cereal grains*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Codex</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>EU</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Japan</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>USA</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5a</td>
</tr>
<tr>
<td>Taiwan</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Other cereal grains refers to all cereal grains, except rice (brown rice), wheat, barley, rye, corn (maize), and buckwheat.
DIRECTIONS FOR USE

GROUP 1B 7A 5 INSECTICIDE

DIRECTIONS FOR USE: All States except WA

Restrains:

This product must ONLY be used for treatment of grain which has been grown on the farm where the grain will be stored.

DO NOT treat a consignment or parcel of stored grain more than once

DO NOT move treated grain within 24 hours after treatment

<table>
<thead>
<tr>
<th>Crop</th>
<th>Pest</th>
<th>Rate</th>
<th>Critical Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cereal grains, post-harvest (except for maize, malting barley and rice)</td>
<td>Lesser grain borer, Rice weevil, Flat grain beetle, Granary weevil, Rust-red flour beetle, Confused flour beetle, Saw-toothed grain beetle, Tropical warehouse moth & Maize weevil.</td>
<td>1 L of Part A plus 400 mL of Part B in 50 L of water</td>
<td>Apply 1 L diluted spray per tonne of grain for up to 6–9 months' protection</td>
</tr>
</tbody>
</table>

PEST NAMES: Confused flour beetle: Tribolium confusum; Flat grain beetle: Cryptolestes spp.; Granary weevil: Sitophilus granarius; Lesser grain borer: Rhyzopertha dominica; Maize weevil: Sitophilus zeamais; Rice weevil: Sitophilus oryzae; Rust-red flour beetle: Tribolium castaneum; Saw-tooth grain beetle: Oryzaephilus spp.; Tropical warehouse moth: Cadra cautella.

NOT TO BE USED FOR ANY PURPOSE OR IN ANY MANNER CONTRARY TO THIS LABEL UNLESS AUTHORISED UNDER APPROPRIATE LEGISLATION

WITHHOLDING PERIOD: NOT REQUIRED WHEN USED AS DIRECTED

MIXING OF SPRAY SOLUTION.

Agitate or shake the Part B container immediately prior to use. Slowly add the appropriate amount of Part B FIRST, into agitating water and ensure that Part B is thoroughly mixed before adding the appropriate amount of Part A. Do NOT mix undiluted Part A and Part B together at any stage.
The purchase and use of Conserve™ On-Farm is governed by the Control Of Product Supply program in addition to label Directions for Use. Together, these are designed to minimize the risk of double application of spinosad and prevent trade issues which may arise through MRL breaches.

The Conserve On-Farm Directions for Use:

- Restrict use of the product to treat grain that has been grown on the property where it will be stored.
- Direct that the product is applied no more than once to any consignment of grain.

The Conserve On-Farm Control of Product Supply program

This requires that -

- Agents for Conserve On-Farm be trained and accredited to manage the End User Declaration (EUD) process at the point of sale.
- Agents verify growers’ eligibility to purchase through sighting their NGR card number.
- Agents ensure that growers understand the EUD and agree to the conditions of product use before signing the EUD document.
- The grower agrees (as part of the EUD) that, should the treated grain be sold, all records of treatment will be passed on to the purchaser via a CVD.
- Agents will provide the grower with an information pack containing a technical manual and CVDs.
- Dow AgroSciences audit the Agents EUD records for process accuracy.

“There are four main pillars that we reinforce: good hygiene; good aeration; storage where you can fumigate properly; and monthly checks.

— Philip Burrill
Senior Development Agronomist, Postharvest Grain Protection Team, Agri-Science Queensland, Department of Agriculture, Fisheries and Forestry

“Conserve On-Farm is a grain protectant not a grain disinfestant. You put an awful lot more pressure on a product, resistance-wise, once you start misusing it in terms of using it as grain disinfestant.

There are three main uses that we would tend to point growers towards using Conserve On-Farm: planting seed; stockfeed; plus grain that goes into any storage where you know it’s going to be very difficult to try and do a fumigation.

“We’ve got a very good new product, use it as Dow recommends because otherwise we will lose it.”
GETTING THE BEST OUT OF CONSERVE™ ON-FARM

Grain protectants are most effective when grain is treated into clean facilities. The following steps will help ensure grain storages begin and remain insect-free for the storage duration.

Step 1.
Know the key pests.

<table>
<thead>
<tr>
<th>Lesser grain borer</th>
<th>Rust-red flour beetle</th>
<th>Rice weevil</th>
<th>Saw-toothed grain beetle</th>
<th>Flat grain beetle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dark brown cylindrical beetle (3 mm) with mouth parts and eyes only visible from side on</td>
<td>Adult beetle reddish-brown (3–4.5 mm) with club shaped segments on antennae ends</td>
<td>3–4 mm dark brown-black weevil with long ‘snout’ and 4 light spots on back</td>
<td>Fast moving, dark brown (3 mm) with characteristic saw-toothed pattern on each side of thorax</td>
<td>2 mm long, flat and fast moving reddish-brown beetle with long antennae</td>
</tr>
</tbody>
</table>

Step 2.
Remove insect food sources and control the base insect population – good hygiene is critical to reducing the overall potential insect burden.

- Clean up old bags and points of insect harbourage.
- Clean up old grain residues that accumulate in and around storages.
- Remove all dust and grain residues before applying a structural treatment.
- Ensure out-loading augers and aeration ducts are clean.

Calibration
Accurate calibration is essential to ensure the correct dose is applied evenly to the grain consignment. Calibration simply involves adjusting grain and protectant flow rates until the correct application rate is reached. Constant grain flow is vital to ensure correct and even application of chemical. Always keep the auger choke fully covered and avoid dispensing chemical into augers that are not full of grain.

Measure the time taken for your auger to deliver a known quantity of grain at a set angle into the silo. Then calculate the amount of liquid protectant that is needed to treat this much grain. If the angle of operation varies significantly with different silo heights, this can affect +/- auger output, and would require the commodity to be re-calibrated to this new angle of operation.

Measure the amount of liquid that is actually being delivered over the same time and adjust the flow rate until the correct rate is reached. It is important to ONLY use water when calibrating equipment to avoid exceeding pesticide MRLs to the test commodity.

Application rate of liquid
Conserve™ On-Farm (after dilution) is used at 1 L of mixture per tonne of grain. The following quick calculations will help to calibrate your spray:

- multiply mL/min at nozzles by 0.06 to give required auger throughput in t/hr
 e.g. 1000 mL/ min * 0.06 = 60 t/hr.
- multiply t/hr at auger by 16.67 to give the required spray delivery in mL/min.
 e.g. 60 t/hr * 16.67 = 1000 mL/min.

It is important to calibrate your equipment every time you spray, allowing for different grain flow rates.

Make up only the amount of diluted Conserve On-Farm required for the current job. If the operation is interrupted (e.g. by bad weather or machinery breakdown etc.) the dilute mix may be stored for 48 hours, as long as it is kept away from sunlight and agitated thoroughly every 8 hours.
GETTING THE BEST OUT OF CONSERVE™ ON-FARM

Step 3. Prepare the grain protectant spray application and augering systems.

- Ensure grain protectant products are on hand.
- Calibrate spray application equipment and augers prior to harvest.
- Position the spray nozzle so as to allow suitable coverage and mixing as the auger lifts the grain up into the storage.
- Position the spray nozzle to allow maintenance and calibration checks.

The position of the spray line nozzle can vary on the equipment, determined primarily on the auger barrel length. If the nozzle is too close to the hopper on longer augers, it can create too much drag and affect elevator output. The nozzle must be positioned to allow suitable coverage and mixing as the augering lifts the grain up and into the storage. The nozzle location must allow ease of access to check for spray pattern and nozzle blockages which can occur in the presence of grain dust.

Step 4. Apply the grain protectant ensuring all grain is protected.

Effective application of grain protectants relies on the even distribution of a very small amount of pesticide through the entire grain mass. Uneven distribution may leave pockets or layers of unprotected grain and insect infestation is inevitable.

Note: The use of stream nozzles or the practice of tipping the protectant mixture irregularly into the hopper are ineffective.

Most on-farm grain protectants are applied to the grain while it is being augered into storage, allowing the auger to do most of the mixing.

Alternative positions for liquid protectant spray nozzles

FIGURE ABOVE SHOWS THREE POSSIBLE NOZZLE LOCATIONS TO APPLY LIQUID PROTECTANTS TO GRAIN:

(A) HOPPER (INLET) Positioned here it is easy to see blockages. Operate the sprayer at 150–300 kPa (20–45 psi). However, used at this point spray may drift and moist grain may slow grain flow.

(B) CASING Spraying from this position allows higher pressure to assist distribution and there is no spray drift. Operate the spray at 300–400 kPa (45–60 psi). As the nozzle is not visible you will need a pressure gauge or flow meter. For best results mount two nozzles at bottom end of auger as shown (B).

(C) OUTLET Positioned here it is easy to see blockages. Dow AgroSciences discourages location of the spray nozzle at the outlet (C) as there is not enough mixing of the product prior to discharge into the storage and is likely to create a spray drift issue.
Step 5.
Once the grain protectant has been applied:

- **Record the details of the grain protectant application.**
 In most states, it is a legal requirement to keep a detailed record of all pesticide applications – when applied, with what product and rate to what commodity. This record will aid the completion of the Commodity Vendor Declaration when the commodity is sold and outturned.

- **Clean the application and elevation equipment after use.**
 An important step in the application process is cleaning out the application and elevation equipment, once the application is completed. If other grains such as PRF cereals, canola or pulses are to be stored or elevated using the same equipment, these may pick up unwanted traces of protectants or other pesticides applied as they are elevated or transferred.

Step 6.
Manipulate the storage environmental to limit or prevent insect reproduction.

Cool and dry environments are least favourable for storage pest insects. The table below outlines the importance of manipulating the grain storage environment.

- **Aerate the grain.**
 Aeration is an important tool to reduce grain temperature, helping to reduce pest numbers and maintaining grain quality. Aerators should be switched on when filling the silo once ducts have been covered. An automatic controller will provide the most reliable results. Aim for a grain temperature of 20°C in summer and less than 15°C in winter.

- **Reduce the grain moisture.**
 Grain moistures above 12% combined with 30°C temperatures provide conditions which favour insect breeding. Higher grain moisture in storage significantly increases the risk of moulds or mycotoxins forming on some commodities. The stockfeed processing sector places a strong focus on checking cereal grains at delivery to detect mycotoxins or moulds. These can have a serious animal health impact in processed feeds.

- **Monitor the storage.**
 Stored grain should be inspected at least once a month. Take a grain sample from the silo base, and if safe, from the top grain peak. A bucket, insect sieve, sticky tape, magnifying glass, pest identification photos and a grain probe are all valuable tools for inspecting grain. When sampling, smell the grain and look at the grain surface for any signs of insect or moisture damage. If storage pests are found, keep a sample and identify them. Seek advice and take appropriate action (e.g. fumigation in a gas-tight storage.)

<table>
<thead>
<tr>
<th>Grain temperature (°C)</th>
<th>Insect and mould development</th>
<th>Grain moisture content (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40–55</td>
<td>Seed damage occurs, reducing viability</td>
<td></td>
</tr>
<tr>
<td>30–40</td>
<td>Mould and insects are prolific</td>
<td>>18</td>
</tr>
<tr>
<td>25–30</td>
<td>Mould development is limited</td>
<td>10–13</td>
</tr>
<tr>
<td>18–20</td>
<td>Young insects stop developing</td>
<td>9</td>
</tr>
<tr>
<td><15</td>
<td>Most insects stop reproducing, mould stops developing</td>
<td><8</td>
</tr>
</tbody>
</table>

Source: Kondinin Group
Product name
Conserve™ On-Farm Grain Protector

Active ingredients
- Spinosad +
- Chlorpyrifos-methyl +
- S-methoprene

Uses
All cereal grains except maize, malting barley and rice (and PRF grain). NOT TO BE USED on oilseeds or pulses.

Pack size
A twin-pack consists of 1 X 5 L of Part A and 2 x 1 L of Part B

Tonnes treated per pack
A twin-pack treats 250 tonnes of grain

Application rate
1 L of part A is mixed with 400 mL of Part B in 50 L water.
1 L of this mix is applied per tonne of grain.

Pests controlled
- Lesser grain borer,
- Confused flour beetle
- Flat grain beetle
- Granary weevil
- Maize weevil
- Rice weevil
- Rust-red flour beetle
- Saw-toothed grain beetle
- Tropical warehouse moth

Withholding period
Nil when used as directed. Do not move treated grain within 24 hours after treatment.

<table>
<thead>
<tr>
<th>REGION</th>
<th>CONTACT</th>
<th>MOBILE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Western and Central SA</td>
<td>Hugh Mayo</td>
<td>0427 659 587</td>
</tr>
<tr>
<td>South East SA</td>
<td>Chris Brown</td>
<td>0429 208 863</td>
</tr>
<tr>
<td>Western Vic and South East SA</td>
<td>Ashleigh Knight</td>
<td>0408 063 084</td>
</tr>
<tr>
<td>North West & Central Vic</td>
<td>Nathan Sydes</td>
<td>0427 799 891</td>
</tr>
<tr>
<td>Eastern Vic and Tas</td>
<td>Gregg Bayon</td>
<td>0417 387 270</td>
</tr>
<tr>
<td>Riverina NSW</td>
<td>Bryce Sturgess</td>
<td>0429 865 686</td>
</tr>
<tr>
<td>South East NSW</td>
<td>Brad Davis</td>
<td>0427 267 849</td>
</tr>
<tr>
<td>Central and North West NSW</td>
<td>Dan Cornally</td>
<td>0429 476 345</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>REGION</th>
<th>CONTACT</th>
<th>MOBILE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liverpool Plains NSW</td>
<td>Jon Dadd</td>
<td>0427 460 290</td>
</tr>
<tr>
<td>North West NSW and Border Rivers QLD</td>
<td>Emma Twine</td>
<td>0429 878 662</td>
</tr>
<tr>
<td>Northern Rivers NSW</td>
<td>Geoff Messer</td>
<td>0408 099 596</td>
</tr>
<tr>
<td>Darling Downs QLD</td>
<td>Kevin Melmeth</td>
<td>0427 700 207</td>
</tr>
<tr>
<td>Kingaroy QLD</td>
<td>Richard Jackman</td>
<td>0427 229 177</td>
</tr>
<tr>
<td>Central QLD</td>
<td>Graham Fossett</td>
<td>0427 458 432</td>
</tr>
</tbody>
</table>

www.conserveonfarm.com.au

Conserve™ On-Farm
GRAIN PROTECTOR

Confidence in a drum

Dow AgroSciences Australia Limited ABN 24 003 771 659. 20 Rodborough Road Frenchs Forest NSW 2086 ™ Trademark of The Dow Chemical Company (“Dow”) or an affiliated company of Dow.
Diacron® is a Registered Trademark of Novartis AG, Basel, Switzerland. K-Osio® is a registered trademark of Bayer. Rizacon™ is a trademark of Wellmark International. Insect images © DAFF QLD

This product is not registered. For use under permit only.